Secondary One Mathematics: An Integrated Approach
Module 2
Systems

By
The Mathematics Vision Project:
Scott Hendrickson, Joleigh Honey,
Barbara Kuehl, Travis Lemon, Janet Sutorius
www.mathematicsvisionproject.org

In partnership with the
Utah State Office of Education

© 2012 Mathematics Vision Project | MVP
In partnership with the Utah State Office of Education
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.
Module 2 – Systems of Equations and Inequalities

Classroom Task: Pet Sitters- A Develop Understanding Task
An introduction to representing constraints with systems of inequalities (A.CED.3)

Ready, Set, Go Homework: Systems 2.1

Classroom Task: Too Big or Not Too Big, That is the Question - A Solidify Understanding Task
Writing and graphing linear inequalities in two variables (A.CED.2, A.REI.12)

Ready, Set, Go Homework: Systems 2.2

Classroom Task: Some of One, None of the Other– A Solidify Understanding Task
Writing and solving equations in two variables (A.CED.2, A.CED.4)

Ready, Set, Go Homework: Systems 2.3

Classroom Task: Pampering and Feeding Time – A Practice Understanding Task
Writing and graphing inequalities in two variables to represent constraints (A.CED.2, A.CED.3, A.REI.12)

Ready, Set, Go Homework: Systems 2.4

Classroom Task: All for One, One for All – A Solidify Understanding Task
Graphing the solution set to a linear system of inequalities (A.CED.3, A.REI.12)

Ready, Set, Go Homework: Systems 2.5

Classroom Task: Get to the Point – A Solidify Understanding Task
Solving systems of linear equations in two variables (A.REI.6)

Ready, Set, Go Homework: Systems 2.6

Classroom Task: Shopping for Cats and Dogs – A Develop Understanding Task
An introduction to solving systems of linear equations by elimination (A.REI.5, A.REI.6)

Ready, Set, Go Homework: Systems 2.7

Classroom Task: Can You Get to the Point, Too? – A Solidify Understanding Task
Solving systems of linear equations by elimination (A.REI.5, A.REI.6)

Ready, Set, Go Homework: Systems 2.8

Classroom Task: Food for Fido and Fluffy – A Solidify Understanding Task
Solving systems of linear inequalities representing constraints (A.CED.3)

Ready, Set, Go Homework: Systems 2.9

Classroom Task: Taken Out of Context – A Practice Understanding Task
Working with systems of linear equations, including inconsistent and dependent systems (A.REI.6)

Ready, Set, Go Homework: Systems 2.10
Classroom Task: More Things Taken Out of Context – A Practice Understanding Task
Working with systems of linear inequalities and their boundaries (A.REI.12)
Ready, Set, Go Homework: Systems 2.11

Classroom Task: Pet Sitters Revisited – A Develop Understanding Task
Using systems of linear equations and inequalities in a modeling context (High School Modeling Standard)
Ready, Set, Go Homework: Systems 2.12
2.1 Pet Sitters
A Develop Understanding Task

The Martinez twins, Carlos and Clarita, are trying to find a way to make money during summer vacation. When they overhear their aunt complaining about how difficult it is to find someone to care for her pets while she will be away on a trip, Carlos and Clarita know they have found the perfect solution. Not only do they have a large, unused storage shed on their property where they can house animals, they also have a spacious fenced backyard where the pets can play.

Carlos and Clarita are making a list of some of the issues they need to consider as part of their business plan to care for cats and dogs while their owners are on vacation.

- **Space:** Cat pens will require 6 ft² of space, while dog runs require 24 ft². Carlos and Clarita have up to 360 ft² available in the storage shed for pens and runs, while still leaving enough room to move around the cages.

- **Start-up Costs:** Carlos and Clarita plan to invest much of the $1280 they earned from their last business venture to purchase cat pens and dog runs. It will cost $32 for each cat pen and $80 for each dog run.

Of course, Carlos and Clarita want to make as much money as possible from their business, so they are trying to determine how many of each type of pet they should plan to accommodate. They plan to charge $8 per day for boarding each cat and $20 per day for each dog.

After surveying the community regarding the pet boarding needs, Carlos and Clarita are confident that they can keep all of their boarding spaces filled for the summer.

So the question is, how many of each type of pet should they prepare for? Their dad has suggested the same number of each, perhaps 12 cats and 12 dogs. Carlos thinks they should plan for more dogs, since they can charge more. Clarita thinks they should plan for more cats since they take less space and time, and therefore they can board more.

What do you think? What recommendations would you give to Carlos and Clarita, and what argument would you use to convince them that your recommendation is reasonable?
Ready, Set, Go!

Ready

Topic: Determine if given value is a solution and solve systems of equations

Substitute the given points into the equations to determine which ordered pair satisfies the system of linear equations, then graph both equations and label the point of intersection.

1. \(y = 3x - 2 \) and \(y = x \)
 - a. \((0, -2)\)
 - b. \((2, 2)\)
 - c. \((1, 1)\)

2. \(y = 2x + 3 \) and \(y = x + 5 \)
 - a. \((2, 7)\)
 - b. \((-7, 11)\)
 - c. \((0, 5)\)

Solve the following systems by graphing. Check the solution by evaluating both equations at the point of intersection.

3. \(y = x + 3 \) and \(y = -2x + 3 \)

4. \(y = 3x - 8 \) and \(y = -x \)
Topic: Determining possible solutions
5. A theater wants to take in at least $2000 for a certain matinee. Children’s tickets cost $5 each and adult tickets cost $10 each. The theater can seat up to 350 people. Find five combinations of children and adult tickets that will make their goal.

Graph each equation below, then determine if the point (3,5) is a solution to the equation. Name two additional points that are solutions to the equation and show these points on the graph.

6. \(y = 2x - 1 \)

7. \(y = \frac{1}{3}x + 2 \)

8. \(y = -3x + 5 \)

9. \(y = \frac{-3}{5}x + 4 \)

Need help? Check out this related video:

https://www.youtube.com/watch?v=vo-CXaCf1I4
2.2 Too Big or Not Too Big, That is the Question

A Solidify Understanding Task

As Carlos is considering the amount of money available for purchasing cat pens and dog runs (see below) he realizes that his father’s suggestion of boarding “the same number of each, perhaps 12 cats and 12 dogs” is too big. Why?

- **Start-up Costs**: Carlos and Clarita plan to invest much of the $1280 they earned from their last business venture to purchase cat pens and dog runs. It will cost $32 for each cat pen and $80 for each dog run.

1. Find at least 5 more combinations of cats and dogs that would be “too big” based on this Start-up Cost constraint. Plot each of these combinations as points on a coordinate grid using the same color for each point.

2. Find at least 5 combinations of cats and dogs that would not be “too big” based on this Start-up Cost constraint. Plot each of these combinations as points on a coordinate grid using a different color for the points than you used in #1.

3. Find at least 5 combinations of cats and dogs that would be “just right” based on this Start-up Cost constraint. That is, find combinations of cat pens and dog runs that would cost exactly $1280. Plot each of these combinations as points on a coordinate grid using a third color.

4. What do you notice about these three different collections of points?

5. Write an equation for the line that passes through the points representing combinations of cat pens and dog runs that cost exactly $1280. What does the slope of this line represent?

Carlos and Clarita don’t have to spend all of their money on cat pens and dog runs, unless it will help them maximize their profit.

6. Shade all of the points on your coordinate grid that satisfy the Start-up Costs constraint.

7. Write a mathematical rule to represent the points shaded in #6. That is, write an inequality whose solution set is the collection of points that satisfy the Start-up Costs constraint.
In addition to start-up costs, Carlos needs to consider how much space he has available, base on the following:

- **Space**: Cat pens will require 6 ft² of space, while dog runs require 24 ft². Carlos and Clarita have up to 360 ft² available in the storage shed for pens and runs, while still leaving enough room to move around the cages.

8. Write an inequality to represent the solution set for the space constraint. Shade the solution set for this inequality on a different coordinate grid.
Ready, Set, Go!

Ready
Topic: Determining if given values are solutions to an equation

Identify which of the given points are solutions to the following linear equations.

1. \(3x + 2y = 12\)
 - a. \((2, 4)\)
 - b. \((3, 2)\)
 - c. \((4, 0)\)
 - d. \((0, 6)\)

2. \(5x - y = 10\)
 - a. \((2, 0)\)
 - b. \((3, 0)\)
 - c. \((0, -10)\)
 - d. \((1, 1)\)

Set
Topic: Graph linear inequalities

Graph the following inequalities on the coordinate plane. Name one point that is a solution to the inequality and one point that is not a solution. Show algebraically and graphically that your points are correct.

3. \(x + y = 6\)
 - a. \((2, __)\)
 - b. \((0, __)\)
 - c. \((_, 0)\)

4. \(2x + 4y = 8\)
 - a. \((2, __)\)
 - b. \((0, __)\)
 - c. \((_, 0)\)

5. \(3x - y = 8\)
 - a. \((2, __)\)
 - b. \((0, __)\)
 - c. \((_, 0)\)

6. \(y \leq 3x + 4\)

7. \(x < 7\)

8. \(y > \frac{-3}{5}x + 2\)

9. \(y \geq -6\)
Go Topic: Solving inequalities

Follow the directions for each problem below. (Show your work!)

10. $10 - 3x < 28$
 a. Solve for x. Then graph the solution on the number line.

 b. Select an x-value from your graph of the solution of the inequality. Replace x in the original inequality $10 - 3x < 28$ with your chosen value. Does the inequality hold true?

 c. Select an x-value that is outside of the solution set on your graph. Replace x in the original inequality $10 - 3x < 28$ with your chosen value. Does the inequality still hold true?

11. $4x - 2y \geq 6$
 a. Solve for y.

 b. Now imagine that your inequality is an equation. In other words, your solution will say $y =$, instead of $y \geq$ or $y \leq$. With the equal sign, it should be the equation of a line. Graph your equation.

 c. Find the y–intercept.

 d. Find the slope.

 e. Select a point that is above the line. $(,)$
 Replace the x and y–values in the inequality $4x - 2y \geq 6$. Is the inequality still true?

 f. Select a point that is below the line. $(,)$
 Replace the x and y–values in the inequality $4x - 2y \geq 6$. Is the inequality still true?

 g. Explain which side of the line should be shaded.

 h. Decide whether the line should be solid or dotted. Justify your decision.

Need help? Check out these related videos:

2.3 Some of One, None of the Other

A Solidify Understanding Task

Carlos and Clarita are comparing strategies for writing equations of the boundary lines for the "Pet Sitter" constraints. They are discussing their work on the space constraint.

- **Space:** Cat pens will require 6 ft\(^2\) of space, while dog runs require 24 ft\(^2\). Carlos and Clarita have up to 360 ft\(^2\) available in the storage shed for pens and runs, while still leaving enough room to move around the cages.

Carlos’ Method: “I made a table. If I don’t have any dogs, then I have room for 60 cats. If I use some of the space for 1 dog, then I can have 56 cats. With 2 dogs, I can board 52 cats. For each additional dog, I can board 4 fewer cats. From my table I know the \(y\)-intercept of my line is 60 and the slope is -4, so my equation is \(y = -4x + 60\).”

Clarita’s Method: “I let \(x\) represent the number of dogs, and \(y\) the number of cats. Since dog runs require 24 ft\(^2\), 24\(x\) represents the amount of space used by dogs. Since cat pens require 6 ft\(^2\), 6\(y\) represents the space used by cats. So my equation is 24\(x\) + 6\(y\) = 360.”

1. Since both equations represent the same information, they must be equivalent to each other.
 a. Show the steps you could use to turn Clarita’s equation into Carlos’ equation. Explain why you can do each step.
 b. Show the steps you could use to turn Carlos’ equation into Clarita’s. Explain why you can do each step.

2. Use both Carlos’ and Clarita’s methods to write the equation of the boundary line for the start-up costs constraint.
 - **Start-up Costs:** Carlos and Clarita plan to invest much of the $1280 they earned from their last business venture to purchase cat pens and dog runs. It will cost $32 for each cat pen and $80 for each dog run.

3. Show the steps you could use to turn Clarita’s start-up costs equation into Carlos’ equation. Explain why you can do each step.

4. Show the steps you could use to turn Carlos’ start-up costs equation into Clarita’s. Explain why you can do each step.
In addition to writing an equation of the boundary lines, Carlos and Clarita need to graph their lines on a coordinate grid.

Carlos’ equations are written in **slope-intercept form**. Clarita’s equations are written in **standard form**. Both forms are ways of writing **linear equations**.

Both Carlos and Clarita know they only need to plot two points in order to graph a line.

Carlos’ strategy: How might Carlos use his slope-intercept form, \(y = -4x + 60 \), to plot two points on his line?

Clarita’s strategy: How might Clarita use her standard form, \(24x + 6y = 360 \), to plot two points on her line? (Clarita is really clever, so she looks for the two easiest points she can find.)
Ready, Set, Go!

Ready

Topic: Determining points that satisfy equations and solving systems of equations

Three points are given. Each point is a solution to at least one of the equations. Find the point that satisfies both equations. (This is the solution to the system!) Justify that the point is a solution to both equations and that the others are not.

1. \[
\begin{align*}
\begin{cases}
y = 2x - 3 \\
y = -x + 3
\end{cases}
\end{align*}
\]
 a. \((-2, 5)\)
 b. \((2, 1)\)
 c. \((4, 5)\)

2. \[
\begin{align*}
\begin{cases}
y = 3x + 3 \\
y = -x + 3
\end{cases}
\end{align*}
\]
 a. \((-1, 0)\)
 b. \((6, -3)\)
 c. \((0, 3)\)

3. \[
\begin{align*}
\begin{cases}
y = 2 \\
y = -4x - 6
\end{cases}
\end{align*}
\]
 a. \((7, 2)\)
 b. \((2, -14)\)
 c. \((-2, 2)\)

4. \[
\begin{align*}
\begin{cases}
y = 2x + 4 \\
x + y = -5
\end{cases}
\end{align*}
\]
 a. \((1, 6)\)
 b. \((-3, -2)\)
 c. \((-3, 2)\)

Set

Topic: Graphing linear equations from standard form using intercepts

Graph the following equations by finding the intercepts.

5. \(5x - 2y = 10\)

6. \(3x - 6y = 24\)
7. \(6x + 2y = 18\)

8. \(-2x + 7y = -14\)

Go

Topic: Adding and multiplying fractions

Add. Reduce your answers but leave as improper fractions when applicable.

9. \(\frac{3}{4} + \frac{1}{8}\)
10. \(\frac{3}{5} + \frac{7}{10}\)
11. \(\frac{2}{3} + \frac{1}{4}\)
12. \(\frac{4}{7} + \frac{8}{21}\)

Multiply. Reduce your answers but leave as improper fractions when applicable.

13. \(\frac{3}{4} \times \frac{2}{9}\)
14. \(\frac{4}{7} \times \frac{7}{10}\)
15. \(\frac{5}{4} \times \frac{2}{9}\)
16. \(\frac{3}{7} \times \frac{8}{21}\)

Need help? Check out these video lessons.

http://www.youtube.com/watch?v=cuNpYve18Pc

http://www.youtube.com/watch?v=6zixwWZ8Rk

http://www.youtube.com/watch?v=oHNR0Fk1DE

© 2012 Mathematics Vision Project | MVP

In partnership with the Utah State Office of Education
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license
2.4 Pampering and Feeding Time
A Practice Understanding Task

Carlos and Clarita have been worried about space and start-up costs for their pet sitters business, but they realize they also have a limit on the amount of time they have for taking care of the animals they board. To keep things fair, they have agreed on the following time constraints.

- **Feeding Time:** Carlos and Clarita estimate that cats will require 6 minutes twice a day—morning and evening—to feed and clean their litter boxes, for a total of 12 minutes per day for each cat. Dogs will require 10 minutes twice a day to feed and walk, for a total of 20 minutes per day for each dog. Carlos can spend up to 8 hours each day for the morning and evening feedings, but needs the middle of the day off for baseball practice and games.

- **Pampering Time:** The twins plan to spend 16 minutes each day brushing and petting each cat, and 20 minutes each day bathing or playing with each dog. Clarita needs time off in the morning for swim team and evening for her art class, but she can spend up to 8 hours during the middle of the day to pamper and play with the pets.

Write inequalities for each of these additional time constraints. Shade the solution set for each constraint on separate coordinate grids.
Ready, Set, Go!

Ready
Topic: Substitution and Solving Equations

Determine whether \(h = 3 \) is a solution to each problem.

1. \(3(h - 4) = -3 \)
2. \(3h = 2(h + 2) - 1 \)
3. \(2h - 3 = h + 6 \)
4. \(3h > -3 \)
5. \(\frac{3}{5} = h \times \frac{1}{5} \)

Determine the value of \(x \) that makes each equation true.

6. \(4x - 2 = 8 \)
7. \(3(x + 5) = 20 \)
8. \(2x + 3 = 2x - 5 \)

Set
Topic: Creating equations, solving real world problems, solve systems of equations

A phone company offers a choice of three text-messaging plans. Plan A gives you unlimited text messages for $10 a month; Plan B gives you 60 text messages for $5 a month and then charges you $0.05 for each additional message; and Plan C has no monthly fee but charges you $0.10 per message.

9. Write an equation for the monthly cost of each of the three plans.
10. If you send 30 messages per month, which plan is cheapest?
11. What is the cost of each of the three plans if you send 50 messages per month?
12. Determine the values for which each plan is the cheapest?
Go

Topic: Solve literal equations

Re-write each of the following equations for the indicated variable.

13. \(3x + 5y = 30\) for \(y\)

14. \(24x + 6y = 360\) for \(x\)

15. \(\frac{1280 - 80d}{32} = c\) for \(d\)

16. \(C = \frac{5}{9}(F - 32)\) for \(F\)

17. \(y = mx + b\) for \(b\)

18. \(Ax + By = C\) for \(y\)

Need help? Check out these related videos.

What does it mean to be a solution?
http://patrickjmt.com/solving-linear-equations/

Solving for a variable.
http://www.khanacademy.org/math/algebra/solving-linear-equations/v/solving-for-a-variable
2.5 All For One, One For All
A Solidify Understanding Task

Carlos and Clarita have found a way to represent combinations of cats and dogs that satisfy each of their individual “Pet Sitter” constraints, but they realize that they need to find combinations that satisfy all of the constraints simultaneously. Why?

1. Begin by listing the **system of inequalities** you have written to represent the **start-up costs** and **space “Pet Sitter”** constraints.

2. Find at least 5 combinations of cats and dogs that would satisfy both of the constraints represented by this system of inequalities. How do you know these combinations work?

3. Find at least 5 combinations of cats and dogs that would satisfy one of the constraints, but not the other. For each combination, explain how you know it works for one of the inequalities, but not for other?

4. Shade a region on a coordinate grid that would represent the **solution set to the system of inequalities**. Explain how you found the region to shade.

5. Rewrite your systems of inequalities to include the additional constraints for **feeding time** and **pampering time**.

6. Find at least 5 combinations of cats and dogs that would satisfy all of the constraints represented by this new system of inequalities. How do you know these combinations work?

7. Find at least 5 combinations of cats and dogs that would satisfy some of the constraints, but not all of them. For each combination, explain how you know it works for some inequalities, but not for others?

8. Shade a region of a coordinate grid that would represent the solution set to the system of inequalities consisting of all 4 “Pet Sitter” constraints. Explain how you found the region to shade.

9. Shade a region in quadrant 1 of a coordinate grid that would represent all possible combinations of cats and dogs that satisfy the 4 “Pet Sitter” constraints. This set of points is referred to as the **feasible region** since Carlos and Clarita can feasibly board any of the combinations of cats and dogs represented by the points in this region without exceeding any of their constraints on time, money or space.

10. How is the feasible region shaded in #9 different from the solution set to the system of inequalities shaded in #8?
Ready, Set, Go!

Ready
Topic: Graphing two variable inequalities

For each inequality and graph, pick a point and use it to determine which half-plane should be shaded, then shade the correct half-plane.

1. \[y \leq \frac{1}{5}x + 4 \]

2. \[y \geq 3x + 5 \]

3. \[5x - 2y \leq 10 \]

4. \[3x + 4y \geq 24 \]
Set

Topic: Writing two variable inequalities

Given the graph with the regions that are shaded write the inequality or system of inequalities.

5.

6.

7.

8.
Go

Topic: Proportional relationships

For each proportional relationship below, one representation is provided. Show the remaining representations and explain any connections you notice between representations.

9. **Equation:**

<table>
<thead>
<tr>
<th>Days</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
</tbody>
</table>

Create a context

10. **Equation:**

Create a context

Claire earns $9 per week allowance.
11. **Equation:** \(y = 3x \)

Table

<table>
<thead>
<tr>
<th>Days</th>
<th>Cost</th>
</tr>
</thead>
</table>

Create a context

Graph

12. **Equation:**

Table

| Days | Cost |

Create a context

Graph

Need Help? Check out these related videos.

Carlos and Clarita need to clean the storage shed where they plan to board the pets. They have decided to hire a company to clean the windows. After collecting the following information, they have come to you for help deciding which window cleaning company they should hire.

- **Sunshine Express Window Cleaners** charges $50 for each service call, plus $10 per window.
- **“Pane”less Window Cleaners** charges $25 for each service call, plus $15 per window.

1. Which company would you recommend, and why? Prepare an argument to convince Carlos and Clarita that your recommendation is reasonable. (It is always more convincing if you can support your claim in multiple ways. How might you support your recommendation using a table? A graph? Algebra?)

Your presentation to Carlos reminds him of something he has been thinking about—how to find the coordinates of the points where the boundary lines in the “Pet Sitter” constraints intersect. He would like to do this algebraically since he thinks guessing the coordinates from a graph might be less accurate.

2. Write equations for the following two constraints.
 - **Space**
 - **Start-up Costs**

 Find where the two lines intersect algebraically. Record enough steps so that someone else can follow your strategy.

3. Now find the point of intersection for the two time constraints.
 - **Feeding Time**
 - **Pampering Time**
Ready, Set, Go!

Ready

Topic: Determine patterns

Find the next two values in the pattern. Describe how you determined these values.

1. 3, 6, 9, 12, __, __ Description:
2. 3, 6, 12, 24, __, ___ Description:
3. 24, 20, 16, 12, __, ___ Description:
4. 24, 12, 6, 3, __, __ Description:

Set

Topic: Solve systems of equations using substitution

For questions 5-8 solve the system of equations using substitution. Check your work by graphing.

5. \[\begin{align*}
 x + 2y &= 9 \\
 3x + 5y &= 20
\end{align*} \]

6. \[\begin{align*}
 -4y + 8x &= 16 \\
 3y + 21x &= 15
\end{align*} \]

7. \[\begin{align*}
 x + 2y &= -1 \\
 3x + 5y &= -1
\end{align*} \]

8. \[\begin{align*}
 y &= 2x - 3 \\
 x + y &= -5
\end{align*} \]

9. Tickets to a show cost $10 in advance and $15 at the door. If 120 tickets are sold for a total of $1390, how many of the tickets were bought in advance?
Go

Topic: Graph two variable inequalities

Graph the following inequalities.

10. $y \leq 3x - 4$

11. $y \leq -2x + 3$

12. $y \geq 4x - 3$

13. $3x + 4y < 12$

14. $6x + 8y \leq 24$

15. $5x + 43 \leq 15$

Need help? Check out these related videos.

2.7 Shopping for Cats and Dogs
A Develop Understanding Task

Clarita is upset with Carlos because he has been buying cat and dog food without recording the price of each type of food in their accounting records. Instead, Carlos has just recorded the total price of each purchase, even though the total cost includes more than one type of food. Carlos is now trying to figure out the price of each type of food by reviewing some recent purchases. See if you can help him figure out the cost of particular items for each purchase, and be prepared to explain your reasoning to Carlos.

1. One week Carlos bought 3 bags of Tabitha Tidbits and 4 bags of Figaro Flakes for $43.00. The next week he bought 3 bags of Tabitha Tidbits and 6 bags of Figaro Flakes for $54.00. Based on this information, figure out the price of one bag of each type of cat food. Explain your reasoning.

2. One week Carlos bought 2 bags of Brutus Bites and 3 bags of Lucky Licks for $42.50. The next week he bought 5 bags of Brutus Bites and 6 bags of Lucky Licks for $94.25. Based on this information, figure out the price of one bag of each type of dog food. Explain your reasoning.

3. Carlos purchased 6 dog leashes and 6 cat brushes for $45.00 for Clarita to use while pampering the pets. Later in the summer he purchased 3 additional dog leashes and 2 cat brushes for $19.00. Based on this information, figure out the price of each item. Explain your reasoning.

4. One week Carlos bought 2 packages of dog bones and 4 packages of cat treats for $18.50. Because the finicky cats didn’t like the cat treats, the next week Carlos returned 3 unopened packages of cat treats and bought 2 more packages of dog bones. After being refunded for the cat treats, Carlos only had to pay $1.00 for his purchase. Based on this information, figure out the price of each item. Explain your reasoning.

5. Carlos has noticed that because each of his purchases have been somewhat similar, it has been easy to figure out the cost of each item. However, his last set of receipts has him puzzled. One week he tried out cheaper brands of cat and dog food. On Monday he purchased 3 small bags of cat food and 5 small bags of dog food for $22.75. Because he went through the small bags quite quickly, he had to return to the store on Thursday to buy 2 more small bags of cat food and 3 more small bags of dog food, which cost him $14.25. Based on this information, figure out the price of each bag of the cheaper cat and dog food. Explain your reasoning.

Summarize the strategies you have used to reason about the price of individual items in the problems given above. What are some key ideas that seem helpful?
Ready, Set, Go!

Ready
Topic: Exponents

Write the following in exponential notation.

1. \(4 \times 4 \times 4 \times 4 \times 4\)
2. \(3x \cdot 3x \cdot 3x \cdot 3x\)

Find each value.

3. \(2^3\)
4. \(3^3\)
5. \(2^5\)
6. \((-2)^3\)
7. \(4^3\)

Set
Topic: Solving systems

8. Nadia and Peter visit the candy store. Nadia buys three candy bars and four fruit roll-ups for $2.84. Peter also buys three candy bars, but can only afford one additional fruit roll-up. His purchase costs $1.79. What is the cost of a candy bar and a fruit roll-up individually?

9. A farmer noticed that his chickens were loose and were running around with the cows in the cow pen. He quickly counted 100 heads and 270 legs. How many chickens did he have and how many cows?
Go

Topic: Solve one variable inequalities.

Solve the following inequalities. Write the solution set in \textit{interval notation} and graph the solution set on a number line.

10. \(4x + 10 < 2x + 14\)

11. \(2x + 6 > 55 - 5x\)

12. \(2(\frac{x}{4} + 3) > 6(x - 1)\)

13. \(9x + 4 \leq -2(x + \frac{1}{2})\)

Solve each inequality. Give the solution in \textit{inequality notation} and \textit{set notation}.

14. \(-\frac{x}{3} > -\frac{10}{9}\)

15. \(5x > 8x + 27\)

16. \(\frac{x}{4} > \frac{5}{4}\)

17. \(3x - 7 \geq 3(x - 7)\)

18. \(2x < 7x - 36\)

19. \(5 - x < 9 + x\)

Need help? Check out these related videos?

Exponential notation:
http://www.khanacademy.org/math/algebra/exponents-radicals/v/understanding-exponents

Solving inequalities:

Set notation and interval notation:
2.8 Can You Get to the Point, Too?
A Solidify Understanding Task

Part 1
In “Shopping for Cats and Dogs,” Carlos found a way to find the cost of individual items when given the purchase price of two different combinations of those items. He would like to make his strategy more efficient by writing it out using symbols and algebra. Help him formalize his strategy by doing the following:

- For each scenario in “Shopping for Cats and Dogs” write a system of equations to represent the two purchases.
- Show how your strategies for finding the cost of individual items could be represented by manipulating the equations in the system. Write out intermediate steps symbolically, so that someone else could follow your work.
- Once you find the price of one of the items in the combination, show how you would find the price of the other item.

Part 2
Writing out each system of equations reminded Carlos of his work with solving systems of equations graphically. Show how each scenario in “Shopping for Cats and Dogs” can be represented graphically, and how the cost of each item shows up in the graphs.

Part 3
Carlos also realized that the algebraic strategy he created in part 1 could be used to find the points of intersection for the “Pet Sitters” constraints. Use the _elimination of variables_ method developed in part 1 to find the point of intersection for each of the following pairs of “Pet Sitter” constraints.

- _Start-up costs_ and _space_ constraints
- _Pampering time_ and _feeding time_ constraints
- Any other pair of “Pet Sitter” constraints of your choice
Ready, Set, Go!

Ready
Topic: Evaluate exponents

Simplify and evaluate the following.

1. \(3^{-2}\)
2. \((0.5)^2\)
3. \(2^4\)
4. \(4^{-2}\)

Write the following expression three different ways (one way can include the simplified value).

5. \((2^3)(4)\)
6. \((3^3)(2^3)\)

Set
Topic: Solve systems of equations

Solve the following systems of equations using *elimination* of variables, then justify graphically.

7. \[
\begin{align*}
2x + 0.5y &= 3 \\
x + 2y &= 8.5
\end{align*}
\]

8. \[
\begin{align*}
3x + 5y &= -1 \\
x + 2y &= -1
\end{align*}
\]

9. \[
\begin{align*}
3x + 5y &= -3 \\
x + 2y &= \frac{4}{3}
\end{align*}
\]

10. A 150-yard pipe is cut to provide drainage for two fields. If the length of one piece \((a)\) is three yards less than twice the length of the second piece \((b)\), what are the lengths of the two pieces?
Topic: Graph two variable linear inequalities

Graph the following linear inequalities on the graphs below. Include constraints.

11. Ben has enough money to buy up to eight yogurts. If his favorite flavors are blueberry and strawberry, what are all the possible combinations he can buy? Graph the inequality that shows all possible combinations of his favorite flavors.

12. Peggy is buying a balloon bouquet. Her favorite colors are silver and purple. The silver balloons are $1 and the purple balloons are $0.80. Graph an inequality that shows how many of each color balloon she can put in her bouquet if she doesn’t spend more than $20.
2.9 Food for Fido and Fluffy
A Solidify Understanding Task

Carlos and Clarita have found two different cat foods that seem to appeal to even the most finicky of cats: Tabitha Tidbits and Figaro Flakes. Each ounce of Tabitha Tidbits contains 2 grams of protein, 4 grams of carbohydrates and 4 grams of fat. Each ounce of Figaro Flakes contains 3 grams of protein, 4 grams of carbohydrates and 2 grams of fat. Since Tabitha Tidbits is fairly expensive, while Figaro Flakes is very cheap, the twins have decided to create a new cat food by mixing the two. After studying some nutritional guidelines for cats, Carlos and Clarita have decided to create a mixture based on the following constraints.

- **Amount of Protein**: Each meal should contain at least 12 grams of protein.
- **Amount of Carbohydrates**: Each meal should contain more than 16 grams of carbohydrates.
- **Amount of Fats**: Each meal should contain no more than 18 grams of fat.
- **Size of a Feeding**: Each meal should consist of less than 10 ounces of food.

For the work that follows, let T represent the number of ounces of Tabitha Tidbits in a meal and let F represent the number of ounces of Figaro Flakes.

1. Write an inequality for each of the constraints.

2. On separate coordinate grids, graph the solution set for each of the inequalities you wrote in #1. How do you know on which side of the boundary line you should shade the half-plane that represents the solution set?

3. Decide if the boundary line for each inequality represented in #2 should be a solid line or a dotted line. Which words or phrases in the constraints suggested a solid line? A dotted line?

4. Find at least 5 combinations of Tabitha Tidbits and Figaro Flakes Carlos and Clarita can mix together to create a nutritious cat meal. Show that these points lie within a feasible region for these constraints.

5. Brutus Bites is a brand of dog food that contains 4 grams of protein and 6 grams of fat per ounce. Lucky Licks is another brand of dog food that contains 12 grams of protein and 4 grams of fat per ounce. Carlos wants to make a meal for dogs that contains at least 8 grams of protein and no more than 6 grams of fat. Write and solve a system of inequalities that Carlos can use to determine a combination of Brutus Bites and Lucky Licks that will satisfy these constraints.
Ready, Set, Go!

Ready
Topic: Solving two variable inequalities

1. A theater wants to take in at least $2000 for a certain matinee. Children’s tickets cost $5 each and adult tickets cost $10 each.

 a. Write an inequality describing the number of tickets that will allow the theater to meet their goal of $2000.

 b. If the theater has a maximum of 350 seats, write an inequality describing the number of both types of tickets the theater can sell.

 c. Find the number of children and adult tickets that can be sold so that all seats are sold and the $2000 goal is reached.

Set
Topic: Writing equations of two variable inequalities

Given the graph with the regions that are shaded write the inequality or system of inequalities.

2.
3.
4.

© 2012 Mathematics Vision Project | MVP
In partnership with the Utah State Office of Education
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license
Go

Topic: Graph two variable inequalities

Graph each set of inequalities below. Include the shaded region of both, plus indicate the region that is true for all inequalities.

5. \[
\begin{align*}
 x - y &< -6 \\
 2y &\geq 3x + 18
\end{align*}
\]

6. \[
\begin{align*}
 5x - y &\geq 5 \\
 2y - x &\geq -10
\end{align*}
\]

Solve the following systems of equations.

7. Nadia and Peter visit the candy store. Nadia buys three candy bars and four fruit roll-ups for $2.84. Peter also buys three candy bars, but can only afford one additional fruit roll-up. His purchase costs $1.79. What is the cost of a candy bar and a fruit roll-up individually?

8. \[
\begin{align*}
 5x - 10y &= 15 \\
 3x - 2y &= 3
\end{align*}
\]

9. \[
\begin{align*}
 5x - y &= 10 \\
 3x - 2y &= -1
\end{align*}
\]

Need help? Check out these related videos.

2.10 Taken Out of Context

A Practice Understanding Task

Write a shopping scenario similar to those in “Shopping for Cats and Dogs” to fit each of the following systems of equations. Then use the elimination of variables method you invented in “Can You Get to the Point, Too” to solve the system. Some of the systems may have interesting or unusual solutions. See if you can explain them in terms of the shopping scenarios you wrote.

1. \[
\begin{align*}
3x + 4y &= 23 \\
5x + 3y &= 31
\end{align*}
\]

2. \[
\begin{align*}
2x + 3y &= 14 \\
4x + 6y &= 28
\end{align*}
\]

3. \[
\begin{align*}
3x + 2y &= 20 \\
9x + 6y &= 35
\end{align*}
\]

4. \[
\begin{align*}
4x + 2y &= 8 \\
5x + 3y &= 9
\end{align*}
\]

Three of Carlos’ and Clarita’s friends are purchasing school supplies at the bookstore. Stan buys a notebook, three packages of pencils and two markers for $7.50. Jan buys two notebooks, six packages of pencils and five markers for $15.50. Fran buys a notebook, two packages of pencils and two markers for $6.25. How much do each of these three items cost?

Explain in words or with symbols how you can use your intuitive reasoning about these purchases to find the price of each item.
Ready, Set, Go!

Ready
Topic: Systems of Inequalities

For each of the systems of inequalities, determine if the given coordinates are solutions to the system.

1. \[
\begin{align*}
&y \leq 3x - 5 \\
&y \geq x + 2
\end{align*}
\]
 a. (6, 10)
 b. (1, 4)
 c. (8, 15)

2. \[
\begin{align*}
&y > -2x + 9 \\
&y \geq 5x - 6
\end{align*}
\]
 a. (-2, -5)
 b. (-1, 12)
 c. (5, 0)

3. \[
\begin{align*}
&y < -\frac{1}{2}x + 9 \\
&y > 6x - 10
\end{align*}
\]
 a. (-2, -5)
 b. (7, 3)
 c. (-8, 10)

Set
Topic: Determine the number of solutions in a system of equations

Express each equation in slope-intercept form. Without graphing, state whether the system of equations has zero, one or infinite solutions. How do you know?

4. \[
\begin{align*}
&3x - 4y = 13 \\
&y = -3x - 7
\end{align*}
\]

5. \[
\begin{align*}
&3x - 3y = 3 \\
&x - y = 1
\end{align*}
\]

6. \[
\begin{align*}
&0.5x - y = 30 \\
&0.5x - y = -30
\end{align*}
\]

7. \[
\begin{align*}
&4x - 2y = -2 \\
&3x + 2y = -12
\end{align*}
\]
Go

Topic: Graph two variable inequalities

Graph the following inequalities. Be sure to label your axes and scale. Justify the region you shade by showing three points in the region as being solutions to the problem. Show a point you have tested to prove your shaded region is accurate.

8. $3x - 4y \geq 12$

9. $x + 6y < 6$

10. $6x + 5y > 1$

11. $x - \frac{1}{2}y \geq 3$

12. On the same set of axes, graph $y < x + 2$ and $y > x + 5$. What values do these two have in common?

Need help? Check out these related videos

Testing a solution to an equation

Number of solutions

Solving inequalities
2.11 More Things Taken Out of Context
A Practice Understanding Task

Solve the following systems of inequalities:

1. \[
\begin{align*}
-5x + 3y & \leq 45 \\
2x + 3y & > 24
\end{align*}
\]
2. \[
\begin{align*}
-10x + 6y & \leq 90 \\
6x + 9y & > 36
\end{align*}
\]

3. Is the point (-3, 10) a solution to the system in problem #1? Why or why not?

4. How are the inequalities representing the boundaries of the solution sets in problems #1 and #2 similar to each other? What accounts for these similarities?

5. Write the system of inequalities whose solution set is shown below:

6. Amanda is examining Frank’s work on #5, when she exclaims, “You have written all of your inequalities backwards. The solution set to your system would look like this.”

What do you think about Amanda’s statement?
Ready, Set, Go!

Ready

Topic: Determine a good viewing window for graphs

When sketching a graph of a function, it is important that we see important points. For linear functions, we want a window that shows important information related to the story. Often, this means including both the x- and y-intercepts.

<table>
<thead>
<tr>
<th>Example: $g(x) = \frac{1}{3}x - 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window: $[-10, 10]$ by $[-10,10]$</td>
</tr>
<tr>
<td>x-scale: 1 y-scale: 1</td>
</tr>
<tr>
<td>NOT a good window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Window: $[-10, 25]$ by $[-10, 5]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-scale: 5 y-scale: 5</td>
</tr>
<tr>
<td>Good window</td>
</tr>
</tbody>
</table>

For the following equations, state a window that would be satisfactory for the given equation. Then sketch a graph in the boxes provided.

1. $f(x) = 3x - 100$
 - x: $[\ , \]$ by y: $[\ , \]$
 - x-scale: y-scale:

2. $5x + 7y = 15$
 - x: $[\ , \]$ by y: $[\ , \]$
 - x-scale: y-scale:
Set

Topic: Creating and solving two variable inequalities

3. Patty makes $8 per hour mowing lawns and $12 per hour babysitting. She wants to make at least $100 per week but can work no more than 12 hours a week. Write and graph a system of linear inequalities. Finally, list 2 possible combinations of hours that Patty could work at each job.

Go

Topic: Solve systems of equations

Solve each system of equations using any method you prefer

4. \[
\begin{align*}
3x + 5y &= -3 \\
x + 2y &= -\frac{4}{3}
\end{align*}
\]

5. \[
\begin{align*}
x - y &= -\frac{12}{5} \\
2x + 5y &= -2
\end{align*}
\]
Create a system of equations and use it to solve the following questions.

6. Of the two non-right angles in a right triangle, one measures twice as many degrees as the other. What are the angles?

7. The sum of two numbers is 70 and the difference is 11. What are the numbers?

8. A rectangular field is enclosed by a fence on three sides and a wall on the fourth side. The total length of the fence is 320 yards. If the field has a total perimeter of 400 yards, what are the dimensions of the field?

9. A ray cuts a line forming two angles. The difference between the two angles is 18°. What does each angle measure?

Need Help? Check out these related videos:

2.12 Pet Sitters Revisited
A Develop Understanding Task

Carlos and Clarita have successfully found a way to represent all of the combinations of cats and dogs that they can board based on all of the following constraints.

- **Space**: Cat pens will require 6 ft\(^2\) of space, while dog runs require 24 ft\(^2\). Carlos and Clarita have up to 360 ft\(^2\) available in the storage shed for pens and runs, while still leaving enough room to move around the cages.

- **Feeding Time**: Carlos and Clarita estimate that cats will require 6 minutes twice a day—morning and evening—to feed and clean their litter boxes, for a total of 12 minutes per day for each cat. Dogs will require 10 minutes twice a day to feed and walk, for a total of 20 minutes per day for each dog. Carlos can spend up to 8 hours each day for the morning and evening feedings, but needs the middle of the day off for baseball practice and games.

- **Pampering Time**: The twins plan to spend 16 minutes each day brushing and petting each cat, and 20 minutes each day bathing or playing with each dog. Clarita needs time off in the morning for swim team and evening for her art class, but she can spend up to 8 hours during the middle of the day to pamper and play with the pets.

- **Start-up Costs**: Carlos and Clarita plan to invest much of the $1280 they earned from their last business venture to purchase cat pens and dog runs. It will cost $32 for each cat pen and $80 for each dog run.

Now they are trying to determine how many of each type of pet they should plan to accommodate. Of course, Carlos and Clarita want to make as much money as possible from their business, so they need to pay attention to both their daily income as well as their daily costs. They plan to charge $8 per day for boarding each cat and $20 per day for each dog. They estimate that each cat will require $2.00 per day in food and supplies, and that each dog will require $4.00 per day in costs.

After surveying the community regarding the pet boarding needs, Carlos and Clarita are confident that they can keep all of their boarding spaces filled for the summer.

So the question is, how many of each type of pet should they prepare for in order to make as much money as possible?

What combination of cats and dogs do you think will make the most money? What recommendations would you give to Carlos and Clarita, and what argument would you use to convince them that your recommendation is reasonable?

To get started on this task, you might want to look for collections of points where the daily profit is the same. For example, can you find a collection of points where for each point the daily profit is $120? What about $180?
Ready, Set, Go!

Ready
Topic: Solve exponential equations

Find the value of x for each situation.

1. $2^x = 8$
2. $3^x = 27$
3. $2^x = 4$
4. $(-2)^x = -8$

Set
Topic: Create and solve two variable inequalities

5. Jane is buying fruit salad and potato salad for a picnic. Fruit salad costs $2.00 per pound and potato salad costs $4.00 per pound. Jane needs to buy at least 6 pounds of salads and she doesn’t want to spend more than $20. Write and graph a system of linear inequalities. Also, list 2 possible combinations of salad Jane could buy.

Let $x =$ pounds of fruit salad and
$y =$ pounds of potato salad.

Go
Topic: Find the solution region of the following systems of inequalities.

6. Write the system of inequalities that is represented in the graph to the right.
Graph each set of inequalities and determine the solution region.

7. \[
\begin{cases}
 x - y < -6 \\
 -2y \geq 3x - 18
\end{cases}
\]

8. \[
\begin{cases}
 5x - y \geq 5 \\
 2y - x \geq 10
\end{cases}
\]

9. \[
\begin{cases}
 5x + 2y \geq -10 \\
 3x - 2y \leq 18 \\
 3x - 9y \geq 27
\end{cases}
\]

10. \[
\begin{cases}
 2x - 3y \leq 24 \\
 x + 4y \leq 8 \\
 3x + y \geq -3
\end{cases}
\]

Need help? Check out these related videos.

Exponents [http://patrickjmt.com/exponents-intro-to-evaluating-a-few-truefalse-questions/]

Rules for exponents [http://patrickjmt.com/basic-exponent-properties/]