MODULE 4 - TABLE OF CONTENTS

EQUATIONS & INEQUALITIES

4.1 Cafeteria Actions and Reactions – A Develop Understanding Task
Explaining each step in the process of solving an equation (A.REI.1)
READY, SET, GO Homework: Equations & Inequalities 4.1

4.2 Elvira’s Equations – A Solidify Understanding Task
Rearranging formulas to solve for a variable (N.Q.1, N.Q.2, A.REI.1, A.CED.4)
READY, SET, GO Homework: Equations & Inequalities 4.2

4.3 Solving Equations Literally – A Practice Understanding Task
Solving literal equations (A.REI.1, A.REI.3, A.CED.4)
READY, SET, GO Homework: Equations & Inequalities 4.3

4.4 Greater Than – A Develop Understanding Task
Reasoning about inequalities and the properties of inequalities (A.REI.1, A.REI.3)
READY, SET, GO Homework: Equations & Inequalities 4.4

4.5 May I Have More, Please? – A Solidify Understanding Task
Applying the properties of inequalities to solve inequalities (A.REI.1, A.REI.3)
READY, SET, GO Homework: Equations & Inequalities 4.5

4.6 Taking Sides – A Practice Understanding Task
Solving linear inequalities and representing the solution (A.REI.1, A.REI.3)
READY, SET, GO Homework: Equations & Inequalities 4.6
4.7H Cafeteria Consumption and Cost – A Develop Understanding Task
Organizing data into rectangular arrays or matrices (N.VM.6, N.VM.7, N.VM.8)
READY, SET, GO Homework: Equations & Inequalities 4.7H

4.8H Eating Up the Lunchroom Budget – A Solidify Understanding Task
Multiplying matrices (N.VM.8)
READY, SET, GO Homework: Equations & Inequalities 4.8H

4.9H The Arithmetic of Matrices – A Practice Understanding Task
Practicing the arithmetic of matrices (N.VM.8)
READY, SET, GO Homework: Equations & Inequalities 4.9H
4.1 Cafeteria Actions and Reactions

A Develop Understanding Task

Elvira, the cafeteria manager, has just received a shipment of new trays with the school logo prominently displayed in the middle of the tray. After unloading 4 cartons of trays in the pizza line, she realizes that students are arriving for lunch and she will have to wait until lunch is over before unloading the remaining cartons. The new trays are very popular and in just a couple of minutes 24 students have passed through the pizza line and are showing off the school logo on the trays. At this time, Elvira decides to divide the remaining trays in the pizza line into 3 equal groups so she can also place some in the salad line and the sandwich line, hoping to attract students to the other lines. After doing so, she realizes that each of the three serving lines has only 12 of the new trays.

“That’s not many trays for each line. I wonder how many trays there were in each of the cartons I unloaded?”

1. Help the cafeteria manager answer her question using the data in the story about each of the actions she took. Explain how you arrive at your solution.

Elvira is interested in collecting data about how many students use each of the tables during each lunch period. She has recorded some data on Post-It Notes to analyze later. Here are the notes she has recorded:

- Some students are sitting at the front table. (I got distracted by an incident in the back of the lunchroom, and forgot to record how many students.)
- Each of the students at the front table has been joined by a friend, doubling the number of students at the table.
- Four more students have just taken seats with the students at the front table.
• The students at the front table separated into three equal-sized groups and then two groups left, leaving only one-third of the students at the table.

• As the lunch period ends, there are still 12 students seated at the front table.

Elvira is wondering how many students were sitting at the front table when she wrote her first note. Unfortunately, she is not sure what order the middle three Post-It Notes were recorded in since they got stuck together in random order. She is wondering if it matters.

2. Does it matter which order the notes were recorded in? Determine how many students were originally sitting at the front table based on the sequence of notes that appears above. Then rearrange the middle three notes in a different order and determine what the new order implies about the number of students seated at the front table at the beginning.

3. Here are three different equations that could be written based on a particular sequence of notes. Examine each equation, and then list the order of the five notes that is represented by each equation. Find the solution for each equation.

• \[\frac{2(x + 4)}{3} = 12 \]

• \[2 \left(\frac{x}{3} + 4 \right) = 12 \]

• \[\frac{2x + 4}{3} = 12 \]
READY

Topic: Solutions to an equation.

Graph the following equations on the coordinate grid. Determine if the given point is a solution to the equation?

1. \(y = 5x - 2 \)

Point: (1, 3) Yes? / No?

2. \(y = -\frac{1}{2}x + 8 \)

Point: (0, 7) Yes? / No?

3. \(y = -x + 4 \)

Point: (2, 2) Yes? / No?

4. \(y = x + 2 \)

Point: (1, 3) Yes? / No?

5. \(y = \frac{5}{2}x - 7 \)

Point: (2, -2) Yes? / No?

6. \(y = -\frac{4}{3}x \)

Point: (2, -5) Yes? / No?
SET

Topic: Solve linear equations using parentheses.

Determine if the two expressions listed are equivalent. Explain your reasoning.

<table>
<thead>
<tr>
<th>7. (14 - (3a + 2))</th>
<th>8. (4b - 10)</th>
<th>9. (\frac{x-7}{4})</th>
<th>10. (\frac{3(w-9)}{5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 - 3a - 2)</td>
<td>(2(2b - 5))</td>
<td>(x - \frac{7}{4})</td>
<td>(\frac{3w}{5} - 27)</td>
</tr>
</tbody>
</table>

11. Without solving, determine if the two equations below have the same solution. Explain why or why not?

\[3(x - 5) = 35\] and \[3x - 5 = 35\].

12. Circle the expressions that are equivalent.

<table>
<thead>
<tr>
<th>(\frac{4t - 10}{2})</th>
<th>(\frac{4t - 10}{2})</th>
<th>(2t - 10)</th>
<th>(4t - 5)</th>
</tr>
</thead>
</table>

Solve for \(x\).

13. \(\frac{4(x-2)}{5} = 20\)
14. \(4\left(\frac{x}{5} - 2\right) = 20\)
15. \(\frac{4x-2}{5} = 20\)

GO

Topic: Determine if a number is a solution to an equation.

Indicate whether the given value is a solution to the corresponding equation. Show your work.

16. \(a = -3\); \(4a + 3 = -9\)
Yes?/No?

17. \(x = \frac{4}{3}\); \(\frac{3}{4}x + \frac{1}{2} = \frac{3}{2}\)
Yes?/No?

18. \(y = 2\); \(2.5y - 10 = -0.5\)
Yes?/No?

19. \(z = -5\); \(2(5 - 2z) = 20 - 2(z - 1)\)
Yes?/No?

20. \(w = \frac{1}{4}\); \(4w = w + \frac{3}{4}\)
Yes?/No?

21. \(b = 5\); \(6x - 2 = 4(x + 2)\)
Yes?/No?
Elvira’s Equations

A Solidify Understanding Task

Elvira, the cafeteria manager, likes to keep track of the things she can count or measure in the cafeteria. She hopes this will help her improve the efficiency of the cafeteria. To remind herself to keep track of important quantities, she has made a table of variables and descriptions of the things she wants to record. Here is a table of things she has decided to keep track of.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Number of students that buy lunch in the salad line</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Number of students that buy lunch in the sandwich line</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Number of students that buy lunch in the pizza line</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Number of food servers in the cafeteria</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Number of minutes it takes to serve lunch to all students</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Number of classes in the school</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Price per lunch</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elvira has written the following equation to describe a cafeteria relationship that seems meaningful to her. She has introduced a new variable A to describe this relationship.

$$A = \frac{S + W + P}{C}$$

1. What does A represent in terms of the school and the cafeteria? Record this information in the table above.
2. Using what you know about manipulating equations, solve this equation for S. Your solution will be of the form $S = an expression written in terms of the variables A, C, W and P$.

3. Does your expression for S make sense in terms of the meanings of the other variables? Explain why or why not.

Here is another one of Elvira's equations.

$$R = P_L(S + W + P)$$

4. What does R represent in terms of the school and the cafeteria? Record this information in the table above.

5. Using what you know about manipulating equations, solve this equation for P_L.

6. Does your expression for P_L make sense in terms of the meanings of the other variables? Explain why or why not.

7. Elvira notices that she uses the expression $S + W + P$ a lot in writing other expressions. She decides to represent this expression using the variable T, so that $T = S + W + P$. What does T represent in terms of the school and the cafeteria? Record this information in the table above.
Elvira is having a meeting with the staff members who work in the lunchroom. She has created a couple of new equations for the food servers.

\[D_F = \frac{T \cdot P_L}{F} \quad M = \frac{M_T}{T} \]

8. a. What does D_F represent in terms of the school and the cafeteria? Record this information in the table above.

b. Solve this equation for P_L. Describe why your solution makes sense in terms of the other variables.

9. a. What does M represent in terms of the school and the cafeteria? Record this information in the table above.

b. Solve this equation for T. Describe why your solution makes sense in terms of the other variables.

10. One of the staff members suggests that they need to write expressions for each of the following. Using the variables in the table, what would these expressions look like?

 a. The average number of students served each minute

 b. The average number of minutes students wait in the pizza line
READY

Topic: Isolate a variable with inverse operations.

Isolate the indicated variable and then fill in the blank for the statement that follows.

1. Solve for \(x; \ ax = 7 \)
 I can find \(1x \) or \(x \) by _____ _____ _____ on both sides of the equation.

2. Solve for \(p; \ b + p = w \)
 I can find \(1p \) or \(p \) by _____ _____ _____ on both sides of the equation.

3. Solve for \(m; \ e = mc^2 \)
 I can find \(1m \) or \(m \) by _____ _____ _____ on both sides of the equation.

4. Solve for \(t; \ d = rt \)
 I can find \(1t \) or \(t \) by _____ _____ _____ on both sides of the equation.

5. Solve for \(r; \ d = rt \)
 I can find \(r \) by _____ _____ _____ on both sides of the equation.

6. Solve for \(h; \ 7 - h = 0 \)
 I can find \(h \) by _____ _____ _____ on both sides of the equation.

7. Solve for \(b; \ b - 11 = 3 \)
 I can find \(b \) by _____ _____ _____ on both sides of the equation.

8. Solve for \(y; \ \frac{1}{2}y = k \)
 I can find \(y \) by _____ _____ _____ on both sides of the equation.

9. Solve for \(h; \ A = \frac{bh}{2} \)
 I can find \(h \) by _____ _____ _____ on both sides of the equation.

10. Solve for \(x; y = mx + b \)
 I can find \(x \) by _____ _____ _____ on both sides of the equation.

SET

Topic: Defining and interpreting variables and units of measure.

Jaxon likes to be organized, so he made the following chart. He has decided to keep track of the miles he runs and the time he spends running. He attends P.E. class on Monday, Wednesday, and Friday, but he goes to school everyday. Fill in the Units column on the chart.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning (Description of what the symbol means in context)</th>
<th>Units (What is counted or measured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>Number of miles ran in PE class on Mondays</td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>Number of miles ran PE class on Wednesdays</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>Number of miles ran PE class on Fridays</td>
<td></td>
</tr>
<tr>
<td>(S)</td>
<td>Number of miles from Jaxon’s house to the school.</td>
<td></td>
</tr>
<tr>
<td>(H)</td>
<td>Time (in hours) to travel to school</td>
<td></td>
</tr>
<tr>
<td>(t_M)</td>
<td>Time (in minutes) spent running in PE on Monday</td>
<td></td>
</tr>
<tr>
<td>(t_W)</td>
<td>Time (in minutes) spent running in PE on Wednesday</td>
<td></td>
</tr>
<tr>
<td>(t_F)</td>
<td>Time (in minutes) spent running in PE on Friday</td>
<td></td>
</tr>
</tbody>
</table>

Make meaning of the expressions below, write what they each mean!
If an expression does not make sense, say why.

11. \(M + W + F \)

12. \(4(M + W + F) \)

13. \(2S \)

14. \(t_M + t_W + t_F \)

15. \(\frac{t_M + t_W + t_F}{3} \)

16. \(5(2H) \)

17. \(M + H \)
Topic: Set notation to interval notation. Inequalities on a number line.

Below you will find the domains of several different functions. The domains are described in either set notation or interval notation. Fill in the missing notation.

<table>
<thead>
<tr>
<th>Set Notation</th>
<th>Interval Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. {x</td>
<td>x ∈ ℝ, −2 < x < 6}</td>
</tr>
<tr>
<td>19.</td>
<td>[−4, 7]</td>
</tr>
<tr>
<td>20. {x</td>
<td>x ∈ ℝ, x ≥ −9}</td>
</tr>
<tr>
<td>21.</td>
<td>(0, 13]</td>
</tr>
<tr>
<td>22. {x</td>
<td>x ∈ ℝ, −15 ≤ x ≤ −8}</td>
</tr>
<tr>
<td>23.</td>
<td>[−32, −15)</td>
</tr>
<tr>
<td>24.</td>
<td>(−∞, ∞)</td>
</tr>
</tbody>
</table>

25. Which notation, interval or set, would be most appropriate when working with a domain of whole numbers?

For each of the inequalities provided graph the values being described on the numbers line.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. x < 6</td>
<td>← →</td>
</tr>
<tr>
<td>27. x > 5</td>
<td>← →</td>
</tr>
<tr>
<td>28. x ≥ −9</td>
<td>← →</td>
</tr>
<tr>
<td>29. −7 ≤ x < 0</td>
<td>← →</td>
</tr>
<tr>
<td>30. 3 ≤ x ≤ 25</td>
<td>← →</td>
</tr>
<tr>
<td>31. −15 < x ≤ 8</td>
<td>← →</td>
</tr>
</tbody>
</table>
4. 3 Solving Equations Literally

A Practice Understanding Task

Solve each of the following equations for \(x \):

1. \(\frac{3x + 2}{5} = 7 \)
2. \(\frac{3x + 2y}{5} = 7 \)

3. \(\frac{4x}{3} - 5 = 11 \)
4. \(\frac{4x}{3} - 5y = 11 \)

5. \(\frac{2}{5}(x + 3) = 6 \)
6. \(\frac{2}{5}(x + y) = 6 \)

7. \(2(3x + 4) = 4x + 12 \)
8. \(2(3x + 4y) = 4x + 12y \)

Write a verbal description for each step of the equation solving process used to solve the following equations for \(x \). Your description should include statements about how you know what to do next. For example, you might write, “First I __________ because ________________…”

9. \(\frac{ax + b}{c} - d = e \)
10. \(r \cdot \sqrt{\frac{mx}{n}} + s = t \)
SOLVING EQUATIONS AND INEQUALITIES – 4.3

READY

Topic: Solving Inequalities.

Use the inequality \(-9 < 2\) to complete each row in the table.

<table>
<thead>
<tr>
<th>Apply each operation to the original inequality (-9 < 2)</th>
<th>Result</th>
<th>Is the resulting inequality true or false?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Add 3 to both sides</td>
<td>(-9+3 < 2+3 \rightarrow -6 < 5)</td>
<td>True</td>
</tr>
<tr>
<td>1. Subtract 7 from both sides.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Add 15 to both sides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Add (-10) to both sides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Multiply both sides by (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Divide both sides by (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Multiply both sides by (-6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Divide both sides by (-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. What operations when performed on an inequality, reverse the inequality? (Be very specific!)

SET

Topic: Solve literal equations that require more than one step.

Solve for the indicated variable. Show your work!!

9. Solve for \(h\). \(Q = 25\pi h\) 10. Solve for \(h\). \(Q = \pi r^2 h\)

11. Solve for \(m\). \(y = 7m + 6\) 12. Solve for \(m\). \(y = mx + b\)

13. Solve for \(z\). \(A = (z + 7)3\) 14. Solve for \(z\). \(A = (z + 7)w\)

15. Solve for \(x\). \(\frac{x+2}{7} = 4\) 16. Solve for \(x\). \(\frac{x+2y}{7} = 4\)

17. Solve for \(x\). \(\frac{2x}{5} - 9 = 6\) 18. Solve for \(x\). \(\frac{2x}{5} - 9y = 6\)

19. Solve for \(x\). \(\frac{3}{4}(x - 2) = 12\) 20. Solve for \(x\). \(\frac{3}{4}(x - 2y) = 12\)
GO

Topic: Identifying x-intercepts and y-intercepts
Locate the x-intercept and y-intercept in the table. Write each as an ordered pair.

21.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>-3</td>
<td>10</td>
</tr>
<tr>
<td>-2</td>
<td>8</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

x – intercept:
y – intercept:

22.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>3</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>-4</td>
</tr>
<tr>
<td>9</td>
<td>-3</td>
</tr>
<tr>
<td>12</td>
<td>-2</td>
</tr>
<tr>
<td>15</td>
<td>-1</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

x – intercept:
y – intercept:

23.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>10</td>
</tr>
<tr>
<td>-2</td>
<td>8</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
</tbody>
</table>

x – intercept:
y – intercept:

Locate the x-intercept and the y-intercept in the graph. Write each as an ordered pair.

24.

x – intercept:
y – intercept:

25.

x – intercept:
y – intercept:
Solve each equation for x. Provide the justifications for each step. See the first example as a reminder for the types of justifications that might be used.

Example:

26.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x - 6 = 15$</td>
<td>$4x - 10 = 2$</td>
</tr>
<tr>
<td>+6 +6</td>
<td></td>
</tr>
<tr>
<td>$\frac{3x}{3} = \frac{21}{3}$</td>
<td></td>
</tr>
<tr>
<td>$x = 7$</td>
<td></td>
</tr>
</tbody>
</table>

27.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-16 = 3x + 11$</td>
<td>$6 - 2x = 10$</td>
</tr>
</tbody>
</table>

28.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6x + 3 = x + 18$</td>
<td>$3x - 10 = 2x + 12$</td>
</tr>
</tbody>
</table>

29.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12x + 3y = 15$</td>
<td>$X(B + 7) = 9$</td>
</tr>
</tbody>
</table>

30.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(B + 7) = 9$</td>
<td></td>
</tr>
</tbody>
</table>

31.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12x + 3y = 15$</td>
<td></td>
</tr>
</tbody>
</table>

32.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(B + 7) = 9$</td>
<td></td>
</tr>
</tbody>
</table>
4.4 Greater Than?

A Develop Understanding Task

For each situation you are given a mathematical statement and two expressions beneath it.

1. Decide which of the two expressions is greater, if the expressions are equal, or if the relationship cannot be determined from the statement.
2. Write an equation or inequality that shows your answer.
3. Explain why your answer is correct.

Watch out—this gets tricky!

Example:
Statement: \(x = 8 \)
Which is greater? \(x + 5 \) or \(3x + 2 \)
Answer: \(3x + 2 > x + 5 \) because if \(x = 8, 3x + 2 = 26, x + 5 = 13 \) and \(26 > 13 \).

Try it yourself:

1. Statement: \(y < x \)
 Which is greater? \(x - y \) or \(y - x \)

2. Statement: \(2x - 3 > 7 \)
 Which is greater? \(5 \) or \(x \)

3. Statement: \(10 - 2x < 6 \)
 Which is greater? \(x \) or \(2 \)

4. Statement: \(4x \leq 0 \)
 Which is greater? \(1 \) or \(x \)
5. Statement: \(n \) is an integer
 Which is greater? \(n \) or \(-n\)

6. Statement \(x > y \)
 Which is greater? \(x + a \) or \(y + a \)

7. Statement: \(x > y \)
 Which is greater? \(x - a \) or \(y - a \)

8. Statement: \(5 > 4 \)
 Which is greater? \(5x \) or \(4x \)

9. Statement: \(5 > 4 \)
 Which is greater? \(\frac{5}{x} \) or \(\frac{4}{x} \)

10. Statement: \(0 < x < 10 \) and \(0 < y < 12 \)
 Which is greater? \(x \) or \(y \)

11. Statement: \(3^{n^2} \geq 27 \)
 Which is greater? \(n \) or \(1 \)
READY

Topic: Write an equation from a context. Interpret notation for inequalities.

Write an equation that describes the story. Then answer the question asked by the story.

1. Virginia’s Painting Service charges $10 per job and $0.20 per square foot. If Virginia earned $50 for painting one job, how many square feet did she paint at the job?

2. Renting the ice-skating rink for a party costs $200 plus $4 per person. If the final charge for Dane’s birthday party was $324, how many people attended his birthday party?

Indicate if the following statements are true or false. Explain your thinking.

3. The notation $12 < x$ means the same thing as $x < 12$. It works just like $12 = x$ and $x = 12$.

4. The inequality $-2(x + 10) \geq 75$ says the same thing as $-2x - 20 \geq 75$. I can multiply by -2 on the left side without reversing the inequality symbol.

5. When solving the inequality $10x + 22 < 2$, the second step should say $10x > -20$ because I added -22 to both sides and I got a negative number on the right.

6. When solving the inequality $-5x \geq 45$, the answer is $x \leq -9$ because I divided both sides of the inequality by a negative number.

7. The words that describe the inequality $x \geq 100$ are “x is greater than or equal to 100.”

SET

Topic: Solve inequalities. Verify that given numbers are elements of the solution set.

Solve for x. (Show your work.) Indicate if the given value of x is an element of the solution set.

8. $2x - 9 < 3$

9. $4x + 25 > 13$

Is this value part of the solution set? $x = 6$; yes? no? $x = -5$; yes? no?
10. \(6x - 4 \leq -28\)
 Is this value part of the solution set? \(x = -10; \) yes? no?

11. \(3x - 5 \geq -5\)
 Is this value part of the solution set? \(x = 1; \) yes? no?

Solve each inequality and graph the solution on the number line.

12. \(x + 9 \leq 7\)

13. \(-3x - 4 > 2\)

14. \(3x < -6\)

15. \(\frac{x}{5} > -\frac{3}{10}\)

16. \(-10x > 150\)

17. \(\frac{x}{-7} \geq -5\)

Solve each multi-step inequality.

18. \(x - 5 > 2x + 3\)

19. \(\frac{3(x-4)}{12} \leq \frac{2x}{3}\)

20. \(2(x - 3) \leq 3x - 2\)
GO

Topic: Use substitution to solve linear systems

Solve each system of equations by using substitution.

Example: \[
\begin{align*}
 y &= 12 \\
 2x - y &= 14
\end{align*}
\]

The first equation states that \(y = 12 \). That information can be used in the second equation to find the value of \(x \) by replacing \(y \) with 12. The second equation now says \(2x - (12) = 14 \). Solve this new equation by adding 12 to both sides and then dividing by 2. The result is \(x = 13 \).

21. \[
\begin{align*}
 y &= 5 \\
 -x + y &= 1
\end{align*}
\]

22. \[
\begin{align*}
 x &= 8 \\
 5x + 2y &= 0
\end{align*}
\]

23. \[
\begin{align*}
 2y &= 10 \\
 4x - 2y &= 50
\end{align*}
\]

24. \[
\begin{align*}
 3x &= 12 \\
 4x - y &= 5
\end{align*}
\]

25. \[
\begin{align*}
 y &= 2x - 5 \\
 y &= x + 8
\end{align*}
\]

26. \[
\begin{align*}
 3x &= 9 \\
 5x + y &= -5
\end{align*}
\]
4.5 May I Have More, Please?

A Solidify Understanding Task

Elvira, the cafeteria manager, has to be careful with her spending and manages the cafeteria so that they can serve the best food at the lowest cost. To do this, Elvira keeps good records and analyzes all of her budgets.

1. Elvira’s cafeteria has those cute little cartons of milk that are typical of school lunch. The milk supplier charges $0.35 per carton of milk, in addition to a delivery charge of $75. What is the maximum number of milk cartons that Elvira can buy if she has budgeted $500 for milk?
 a. Write and solve an inequality that models this situation.
 b. Describe in words the quantities that would work in this situation.
 c. Write your answer using appropriate notation.

2. Students love to put ranch dressing on everything, so Elvira needs to keep plenty in stock. The students eat about 2.25 gallons of ranch each day! Elvira started the school year with 130 gallon of ranch dressing. She needs to have at least 20 gallons left when she reorders to have enough in stock until the new order comes. For how many days will her ranch dressing supply last before she needs to reorder?
 a. Write and solve an inequality that models this situation.
b. Describe in words the quantities that would work in this situation.

c. Write your answer in both interval and set notation.

3. The prices on many of the cafeteria foods change during the year. Elvira finds that she has ordered veggie burgers four times and paid $78, $72, $87, and $90 on the orders. To stay within her budget, Elvira needs to be sure that the average order of veggie burgers is not more than $82. How much can she spend on the fifth order to keep the average order within her budget?
 a. Write and solve an inequality that models this situation.

 b. Describe in words the quantities that would work in this situation.

 c. Write your answer in both interval and set notation.

4. Elvira can purchase ready-made pizzas for $14.50 each. If she makes them in the cafeteria, she can spend $44.20 on ingredients and $6.25 per pizza on labor. For how many pizzas is it cheaper for the cafeteria to make the pizzas themselves rather than buy them ready-made?
 a. Write and solve an inequality that models this situation.

 b. Describe in words the quantities that would work in this situation.

 c. Write your answer in both interval and set notation.
5. Elvira is comparing prices between two different suppliers of fresh lettuce. Val’s Veggies charges $250 for delivery plus $1.50 per bag of lettuce. Sally’s Salads charges $100 for delivery plus $4.00 per bag of lettuce. How many bags of lettuce must be purchased for Val’s Veggies to be the cheaper option?
 a. Write and solve an inequality that models this situation.
 b. Describe in words the quantities that would work in this situation.
 c. Write your answer in both interval and set notation.

6. Each student that buys school lunch pays $2.75. The cafeteria typically brings in between $1168.75 and $1438.25. How many students does the cafeteria usually serve?
 a. Model this situation using an inequality.
 b. Describe in words the quantities that would work in this situation.
 c. Write your answer in both interval and set notation.
READY

Topic: Interpret phrases that imply an inequality.

Rewrite the given “word sentence” as a “math sentence.” Each math sentence will use one of the following symbols: >, <, ≤, ≥. Use “x” in place of the number.

<table>
<thead>
<tr>
<th>Word Sentence</th>
<th>Math Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: I am thinking of a number that is greater than 13.</td>
<td>x > 13</td>
</tr>
<tr>
<td>1. I am thinking of a number that is at least 13.</td>
<td></td>
</tr>
<tr>
<td>2. I am thinking of a number that is no fewer than 13.</td>
<td></td>
</tr>
<tr>
<td>3. I am thinking of a number that does not exceed 13.</td>
<td></td>
</tr>
<tr>
<td>4. I am thinking of a number that is at most 13.</td>
<td></td>
</tr>
<tr>
<td>5. I am thinking of a number that is no more than 13.</td>
<td></td>
</tr>
<tr>
<td>6. I am thinking of a number that is fewer than 13.</td>
<td></td>
</tr>
<tr>
<td>7. I am thinking of a number that is not above 13.</td>
<td></td>
</tr>
<tr>
<td>8. I am thinking of a number that is less than 13.</td>
<td></td>
</tr>
<tr>
<td>9. I am thinking of a number that is not under 13.</td>
<td></td>
</tr>
<tr>
<td>10. I am thinking of a number that is not greater than 13.</td>
<td></td>
</tr>
</tbody>
</table>

SET

Topic: Write and solve inequalities from a context.

11. To take sweepstakes for the largest pumpkin crop at the Riverside County Fair, the average weight of Ethan’s two pumpkins must be greater than 875 lbs. One of his pumpkins weighs 903 lbs. What is the least amount of pounds the second pumpkin could weigh in order for Ethan to win the prize?

 a) Write an inequality that models this situation. Be sure to define your variables.
 b) Describe in words the quantities that would work in this situation.
 c) Write your answer in both interval and set notation.

12. The average of Aaron’s three test scores must be at least 93 to earn an A in the class. Aaron scored 89 on the first test and 94 on the second test. What scores can Aaron get on his third test to guarantee an A in the class? (The highest possible score is 100.)

 a) Write and solve an inequality that models this situation. Be sure to define your variables.
 b) Describe in words the quantities that would work in this situation.
 c) Write your answer in both interval and set notation.
13. A cell phone company offers a plan that costs $35.99 and includes unlimited texting. Another company offers a plan that costs $19.99 and charges $0.25 per text. For what number of texts does the second company’s plan cost more than the first company’s plan?

a) Write and solve an inequality that models this situation. Be sure to define your variables.

b) Describe in words the quantities that would work in this situation.

c) Write your answer in both interval and set notation.

GO

Topic: Use substitution to solve linear systems

Solve each system of equations by using substitution.

Example:

\[
\begin{align*}
 y &= x + 3 \\
 2x - y &= 14
\end{align*}
\]

The first equation states that \(y = x + 3 \). That information can be used in the second equation to find the value of \(x \) by replacing \(y \) with \(x + 3 \). The second equation now says \(2x - (x + 3) = 14 \). Solve this new equation by first distributing the negative over \(x + 3 \). The new equation will be \(2x - x - 3 = 14 \). Combine like terms. You will get the equivalent equation \(x - 3 = 14 \). Add 3 to both sides. You should get \(x = 17 \). But you still don’t know the value of \(y \). Now that you know the value of \(x \), you can use either equation to figure out the value of \(y \). Since the first equation is simpler, you may want to substitute the known value of \(x \) (recall that \(x = 17 \)) into it. It should be easy to see what \(y \) equals. \(y = (17) + 3 = 20 \).

21. \[
\begin{align*}
 y &= x + 5 \\
 2x + y &= -1
\end{align*}
\]

22. \[
\begin{align*}
 x &= y - 1 \\
 5x + 2y &= 9
\end{align*}
\]

23. \[
\begin{align*}
 y &= 10 - x \\
 4x - 2y &= 40
\end{align*}
\]

24. \[
\begin{align*}
 x &= 1 + y \\
 4x - y &= 7
\end{align*}
\]
4.6 Taking Sides

A Practice Understanding Task

Joaquin and Serena work together productively in their math class. They both contribute their thinking and when they disagree, they both give their reasons and decide together who is right. In their math class right now, they are working on inequalities. Recently they had a discussion that went something like this:

Joaquin: The problem says that “6 less than a number is greater than 4.” I think that we should just follow the words and write: 6 − n > 4.

Serena: I don’t think that works because if n is 20 and you do 6 less than that you get 20 − 6 = 14. I think we should write n − 6 > 4

Joaquin: Oh, you’re right. Then it makes sense that the solution will be n > 10, which means we can choose any number greater than 10.

The situations below are a few more of the disagreements and questions that Joaquin and Serena have. Your job is to decide how to answer their questions, decide who is right, and give a mathematical explanation of your reasoning.

1. Joaquin and Serena are assigned to graph the inequality \(x \geq -7 \).
 Joaquin thinks the graph should have an open dot -7.
 Serena thinks the graph should have a closed dot at -7.
 Explain who is correct and why.

2. Joaquin and Serena are looking at the problem \(3x + 1 > 0 \).
 Serena says that the inequality is always true because multiplying a number by three and then adding one to it makes the number greater than zero.
 Is she right? Explain why or why not.
3. The word problem that Joaquin and Serena are working on says, “4 greater than x”. Joaquin says that they should write: \(4 > x \). Serena says they should write: \(4 + x \). Explain who is correct and why.

4. Joaquin is thinking hard about equations and inequalities and comes up with this idea:
 If \(45 + 47 = t \), then \(t = 45 + 47 \).
 So, if \(45 + 47 < t \), then \(t < 45 + 47 \).
 Is he right? Explain why or why not.

5. Joaquin’s question in #4 made Serena think about other similarities and differences in equations and inequalities. Serena wonders about the equation \(-\frac{x}{3} = 4 \) and the inequality \(-\frac{x}{3} > 4 \). Explain to Serena ways that solving these two problems are alike and ways that they are different. How are the solutions to the problems alike and different?

6. Joaquin solved \(-15q \leq 135\) by adding 15 to each side of the inequality. Serena said that he was wrong. Who do you think is right and why?

 Joaquin’s solution was \(q \leq 150 \). He checked his work by substituting 150 for \(q \) in the original inequality. Does this prove that Joaquin is right? Explain why or why not.

 Joaquin is still skeptical and believes that he is right. Find a number that satisfies his solution but does not satisfy the original inequality.
7. Serena is checking her work with Joaquin and finds that they disagree on a problem. Here’s what Serena wrote:

\[3x + 3 \leq -2x + 5 \]
\[3x \leq -2x + 2 \]
\[x \leq 2 \]

Is she right? Explain why or why not?

8. Joaquin and Serena are having trouble solving \(-4(3m - 1) \geq 2(m + 3)\)

Explain how they should solve the inequality, showing all the necessary steps and identifying the properties you would use.

9. Joaquin and Serena know that some equations are true for any value of the variable and some equations are never true, no matter what value is chosen for the variable. They are wondering about inequalities. What could you tell them about the following inequalities? Do they have solutions? What are they? How would you graph their solutions on a number line?

 a. \[4s + 6 \geq 6 + 4s \]

 b. \[3r + 5 > 3r - 2 \]

 c. \[4(n + 1) < 4n - 3 \]

10. The partners are given the literal inequality \(ax + b > c\) to solve for \(x\). Joaquin says that he will solve it just like an equation. Serena says that he needs to be careful because if \(a\) is a negative number, the solution will be different. What do you say? What are the solutions for the inequality?
READY

Topic: Solving equations and inequalities from a context.

Write the given situation as an equation or inequality and then solve it.

1. The local amusement park sells summer memberships for $50 each. Normal admission to the park costs $25; admission for members costs $15.

 a. If Darren wants to spend no more than $100 on trips to the amusement park this summer, how many visits can he make if he buys a membership with part of that money?

 b. How many visits can he make if he pays normal admission instead?

 c. If he increases his budget to $160, how many visits can he make as a member?

 d. How many can he make as a non-member with the increased budget of $160?

2. Jade just took a math test with 20 questions, each question is worth an equal number of points. The test is worth 100 points total.

 a. Write an equation that can be used to calculate Jade’s score based on the number of questions she got right on the test.

 b. If a score of 70 points earns a grade of C-, how many questions would Jade need to get right to get at least a C- on the test?

 c. If a score of 83 points earns a grade of B, how many questions would Jade need to get right to get at least a B on the test?

 d. Suppose Jade got a score of 60% and then was allowed to retake the test. On the retake, she got all the questions right that she got right the first time, and also got half the questions right that she got wrong the first time. What percent of the questions did Jade get right, in total, on the retake?
SET

Topic: Solve and justify one variable inequalities

Solve each inequality, justifying each step you use.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>(-5x < 35)</td>
<td>Justification</td>
</tr>
<tr>
<td>4.</td>
<td>(x + 68 \geq 75)</td>
<td>Justification</td>
</tr>
<tr>
<td>5.</td>
<td>(2x - 4 \leq 10)</td>
<td>Justification</td>
</tr>
<tr>
<td>6.</td>
<td>(5 - 4x \leq 17)</td>
<td>Justification</td>
</tr>
<tr>
<td>7.</td>
<td>(\frac{x}{-3} > \frac{-10}{9})</td>
<td>Justification</td>
</tr>
<tr>
<td>8.</td>
<td>(2(x - 3) \leq 3x - 2)</td>
<td>Justification</td>
</tr>
</tbody>
</table>
Solve each inequality and graph the solution on the number line.

9. \(x - 8 > -20 \)

10. \(x + 11 > 13 \)

Solve each multi-step inequality.

11. \(4x + 3 < -1 \)

12. \(4 - 6x \leq 2(2x + 3) \)

13. \(5(4x + 3) \geq 9(x - 2) - x \)

14. \(\frac{2}{3}x - \frac{1}{2}(4x - 1) \geq x + 2(x - 3) \)

Topic: Solve literal equations

15. Solve the following equation for \(C \): \(F = \frac{9}{5}C + 32 \)

16. Given \(V = \frac{1}{3}\pi r^2 h \), rewrite the formula to isolate the variable \(r \).

17. The area formula of a regular polygon is \(A = \frac{1}{2}Pa \). The variable \(a \) represents the apothem and \(P \) represents the perimeter of the polygon. Solve the equation for the apothem, \(a \).
18. The equation $y = mx + b$ is the equation of a line. Isolate the variable b.

19. The equation for the circumference c of a circle with radius r is $c = 2\pi r$. Solve the equation for the radius, r.

20. The equation for the area of a circle A based on diameter d is $A = \pi \frac{d^2}{4}$. Solve the equation to isolate the diameter, d.

GO

Topic: Solve systems of equations by graphing

Graph both lines on the same coordinate grid. Identify the point of intersection. Then test the x and y values of the point of intersection in the two equations.

21. \[
\begin{align*}
 y &= 2x + 5 \\
 -x + y &= 1 \\
\end{align*}
\]

22. \[
\begin{align*}
 10 + y &= 3x \\
 2x + y &= 0 \\
\end{align*}
\]

23. \[
\begin{align*}
 x + y &= 9 \\
 x - y &= -7 \\
\end{align*}
\]
4.7H Cafeteria Consumption and Costs

A Develop Understanding Task

Sometimes Elvira hosts after school events in the cafeteria as clubs and teams celebrate their accomplishments. Frequently she orders too much food for such events—and occasionally not enough. For example, she has noticed that the chess club eats less than the football team, but more than the cheerleaders.

Elvira has asked you to help her sort through her records for the past few years, hoping she can better plan on how much food to order for the upcoming soccer team and drama club events. Unfortunately, Elvira kept most of her records on Post-It Notes, and now everything is out of order. Fortunately, she used a different color of Post-It Notes each year, so you at least have a place to start.

1. Here is the information you have identified from the past three years for the soccer team and drama club events. The blue Post-It Notes are from three years ago, the yellow from two years ago, and the pink from last year’s events. Organize the data for each year in such a way that it can be combined with similar data from other years.

<table>
<thead>
<tr>
<th>Blue Post-It Note</th>
<th>Yellow Post-It Note</th>
<th>Blue Post-It Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered 10 packages of chips for the soccer team—Way too much!</td>
<td>Ordered 6 packages of chips for the soccer team—Definitely not enough!</td>
<td>Ordered 3 dozen cookies for the drama club—Should have ordered more</td>
</tr>
<tr>
<td>Blue Post-It Note</td>
<td>Pink Post-It Note</td>
<td>Yellow Post-It Note</td>
</tr>
<tr>
<td>Ordered 4 gallons of drinks for the soccer team. They poured some on their coach! (big mess)</td>
<td>Ordered 8 packages of chips for the soccer team—My neighbor is on the team!</td>
<td>Ordered 5 dozen cookies for the drama club—I really like these kids!</td>
</tr>
<tr>
<td>Pink Post-It Note</td>
<td>Blue Post-It Note</td>
<td>Pink Post-It Note</td>
</tr>
<tr>
<td>Ordered 10 packages of chips for the drama club—They talked a lot with fake accents</td>
<td>Ordered 5 gallons of drinks for the drama club (they talk a lot and seem to get thirsty!)</td>
<td>Ordered 4 dozen cookies for the drama club—Too much drama, too little character!</td>
</tr>
</tbody>
</table>
2. You suggest to Elvira that for each event she should order the average amount of each item based on what she has ordered over the past three years. How might you represent this year’s order in a concise, organized way? Describe in detail how you calculated the amount of each item to be ordered for each event so Elvira can follow your description when planning for future events.

3. Elvira just informed you that the soccer team won the state championship and the drama club took major awards at the Shakespearean Festival competition. Consequently, both groups have decided to allow each member of the team or club to invite three guests to accompany them to their celebration events. Elvira assumes that each of the guests will consume about the same amount of food as the team or club members they accompany. Explain to Elvira how to use your representation of the original amount of food to order from question 2 to determine the new amount of food to order.

4. Elvira can order food from either Mainstreet Market or Grandpa’s Grocery, and she has given you a list of the prices at each store for each item to be purchased. She would like you to find the total cost of purchasing the recommended amount of food from question 2 for each event from each store. Elvira knows that for some events it might be best to purchase the food from Mainstreet Market and for other events it may be better to purchase the food from Grandpa’s Grocery. She also realizes that it is too time consuming to purchase some items from one store and some from another. You will need to keep track of the details of your computations for the total cost so Elvira can use your strategy for future events.

<table>
<thead>
<tr>
<th></th>
<th>Mainstreet Market</th>
<th>Grandpa’s Grocery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per package of chips</td>
<td>$2.50</td>
<td>$2.00</td>
</tr>
<tr>
<td>Cost per dozen cookies</td>
<td>$3.00</td>
<td>$4.00</td>
</tr>
<tr>
<td>Cost per gallon of drink</td>
<td>$2.00</td>
<td>$1.50</td>
</tr>
</tbody>
</table>
Topic: Creating tables from graphs

For each of the given functions, either explicit or recursive, find the missing values in the table. Use the explicit rules and equations as a tool to find the values. If you are not given the explicit rule you might consider creating it to help you with your work.

1. \(f(x) = -2x + 7 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

2. \(g(x) = 3x - 25 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>-37</td>
</tr>
</tbody>
</table>

3. \(h(x) = h(x - 1) + 6; h(1) = -13 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(h(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

4. \(d(t) = d(t - 1) - 2; d(1) = 34 \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(d(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

5. \(y = 7x - 35 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

6. \(x + y = 24 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-20</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
SET

Topic: Organizing information in matrices

Elvira has been running a private catering business to make extra money. She needs some help organizing the information in problems 7 through 10 below so that she can better predict amounts to purchase and improve her profits. Assist her by organizing the information in a meaningful way so that she can average the years and do better for the coming year.

7. The last three years Elvira has catered family gatherings and city events. Last year she provided the following at family gatherings she catered: 5 bags of chips, 6 dozen cookies and 4 gallons of drink. Last year at city events she provided the following: 16 bags of chips, 20 gallons or drink and 24 dozen cookies. Organize this information.

8. Two year ago Elvira provided the following at family events: 5 gallons of drink, 4 bags of chips and 5 dozen cookies. While she provided the following at city events: 20 dozen cookies, 18 gallons or drink and 12 bags of chips.

9. Three years ago Elvira provided the following at city events: 14 bags of chips, 20 gallons of drink and 19 dozen cookies. She also provided the following at family gatherings: 6 bags of chips, 7 dozen cookies and 9 gallons or drink.

10. If you provide Elvira with an average amount to be ordered for the gatherings and events she caters in the coming year, how much of each item would she need? Present the average in an organized way.
GO

Topic: Arithmetic and Geometric Sequences

Remember sequences from the beginning of the year. For each sequence below, determine whether it is either arithmetic or geometric and find both the recursive and the explicit rules.

11. \(1, 3, 5, 7, \ldots\)
 - Arithmetic or geometric?
 - Recursive: __________________________
 - Explicit: ____________________________

12. \(3, 6, 12, 24, \ldots\)
 - Arithmetic or geometric?
 - Recursive: __________________________
 - Explicit: ____________________________

13. Time (in days) | Number of people
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
</tbody>
</table>
 - Arithmetic or geometric?
 - Recursive: __________________________
 - Explicit: ____________________________

14. Time (in days) | Number of bacteria
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>12.8</td>
</tr>
<tr>
<td>4</td>
<td>20.48</td>
</tr>
</tbody>
</table>
 - Arithmetic or geometric?
 - Recursive: __________________________
 - Explicit: ____________________________

15. Elvira likes to exercise in her spare time. She has been running. The first days she went running she did 1000 yards. She has been running an additional 50 yards each day she works out.
 - Arithmetic or geometric?
 - Recursive: __________________________
 - Explicit: ____________________________

16. Evan has started a business and, following Bill's example, is going to send out a chain email to get customers. He sends the email to 5 people the first day and they each are going to send it to 7 people. Then those will each send it to 7 more and so on.
 - Arithmetic or geometric?
 - Recursive: __________________________
 - Explicit: ____________________________
4.8H Eating Up the Lunchroom Budget

A Solidify Understanding Task

In Cafeteria Consumption and Costs you created a matrix to represent the number of food items Elvira planned to order this year for the soccer team and drama club celebrations. Your matrix probably looked something like this: (Note: labels have been added to keep track of the meaning of the rows and columns.)

\[
\begin{bmatrix}
\text{chips} & \text{cookies} & \text{drinks} \\
\text{Soccer} & 8 & 7 & 4 \\
\text{Drama} & 10 & 4 & 4
\end{bmatrix}
\]

You were also given information about the cost of purchasing each food item at two different stores, Mainstreet Market and Grandpa’s Grocery. That information could also be represented in a matrix like this:

\[
\begin{bmatrix}
\text{Mainstreet Market} & \text{Grandpa’s Grocery} \\
\text{Cost per package of chips} & 2.50 & 2.00 \\
\text{Cost per dozen cookies} & 3.00 & 4.00 \\
\text{Cost per gallon of drink} & 2.00 & 1.50
\end{bmatrix}
\]

In question 4 of the previous task you were asked to determine how much each event would cost if all of the food for the event was purchased at Mainstreet Market or Grandpa’s Grocery. These total amounts could be recorded in a matrix that looks like this:

\[
\begin{bmatrix}
\text{Mainstreet Market} & \text{Grandpa’s Grocery} \\
\text{Soccer} & a & b \\
\text{Drama} & c & d
\end{bmatrix}
\]
1. Calculate the values of \(a, b, c, \) and \(d \) in the matrix above.

2. Explain, in detail, how you would use the numbers in the first two matrices above to obtain the values for the third matrix.

3. In addition to the soccer team and drama club, Elvira plans to host events for the chess club, the cheerleaders and the football team. She gives you the following matrix to represent food items that need to be ordered for each of the events. Can you use matrix multiplication with the cost matrix given above to determine the total cost of each event if items are purchased at each store? If yes, show how. If no, explain why not.

\[
\begin{bmatrix}
\text{chips} & \text{cookies} & \text{drinks} \\
\text{Soccer} & 8 & 7 & 4 \\
\text{Drama} & 10 & 4 & 4 \\
\text{Chess} & 3 & 4 & 2 \\
\text{Cheerleaders} & 2 & 3 & 2 \\
\text{Football} & 14 & 12 & 8
\end{bmatrix}
\]

4. In addition to chips, cookies and drinks, Elvira plans to add rolls and cold cuts to the events’ menu. She gives you the following matrix to represent all of the food items that need to be ordered for each of the events. Can you use matrix multiplication with the cost matrix given above to determine the total cost of each event if items are purchased at each store? If yes, show how. If no, explain why not.

\[
\begin{bmatrix}
\text{chips} & \text{cookies} & \text{drinks} & \text{rolls} & \text{cold cuts} \\
\text{Soccer} & 8 & 7 & 4 & 6 & 4 \\
\text{Drama} & 10 & 4 & 4 & 8 & 5 \\
\text{Chess} & 3 & 4 & 2 & 2 & 2 \\
\text{Cheerleaders} & 2 & 3 & 2 & 2 & 2 \\
\text{Football} & 14 & 12 & 8 & 12 & 10
\end{bmatrix}
\]
Topic: Equivalent Equations

The pairs of equations below are equivalent. Determine what was done to the first equation in order to obtain the second equation. (For example, everything multiplied by 5 or Multiplicative Property of Equality) If more than one operation was performed please indicate the operations and the order they were performed.

1. \(x + y = 5 \)
 \(3x + 3y = 15 \)

2. \(4x + 3y = 12 \)
 \(x + \frac{3}{4}y = 3 \)

3. \(6x + 4y = 20 \)
 \(y = -\frac{3}{2}x + 5 \)

Determine whether or not the pairs of equations below are equivalent. If equivalent state the operations used to create the second from the first. If not equivalent show why not.

4. \(54x - 42y = 90 \)
 \(9x + 7y = 15 \)

5. \(12x + 9y = 21 \)
 \(4x + 3y = 7 \)

6. \(2x + 5y = 10 \)
 \(y = \frac{2}{5}x + 10 \)

Literal Equations: Solve each of the equations below for \(y \), put the equation into slope intercept form \((y = mx + b)\). Show your work and justifications.

7. \(-5x + y = 12\) Justification

8. \(6x + 2y = 12\) Justification

9. \(-12x + 4y = -16\) Justification

10. \(5x - 2y = 10\) Justification
SET
Topic: Matrix Multiplication

The equipment manager for the school athletics department is attempting to restock some of the needed uniform and equipment items for the upcoming seasons of baseball and football. It has been determined based on current levels of inventory and the number of players that will be returning that more socks, pants and helmets will be needed. The equipment manager has organized the information in the matrix below.

\[
\begin{bmatrix}
13 & 15 & 7 \\
24 & 45 & 20
\end{bmatrix}
\]

The school has contracted with two supply stores in the past for equipment needs. The matrix below shows how much each store charges for the needed items.

\[
\begin{bmatrix}
3.50 & 3.00 \\
35.00 & 40.00 \\
22.00 & 45.50
\end{bmatrix}
\]

11. Calculate the values of \(a\), \(b\), \(c\) and \(d\) in the “Total Cost Matrix”.

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]

12. Show the detailed calculations for finding the value of \(a\) and \(b\). How do you use the numbers in the first two matrices above to obtain the values for the “Total Costs Matrix”?
GO

Topic: Representing visual patterns of change with equations, finding patterns

Create a table and equation for the visual pattern to the right. If you are unable to create an equation for the attribute identified then state the pattern you notice. (All triangles are equilateral and the side length of the triangle in step 1 is one unit in length.)

13. The width of the large triangle with respect to the Step number.

14. The number of small triangles with side length of one in the large triangle with respect to the Step number.

15. The perimeter of the large triangle with respect to the Step number.

16. The number of 60-degree angles in the figure with respect to the Step number.

17. The number of white triangles in the large triangle with respect to the Step number.
4.9H The Arithmetic of Matrices

A Practice Understanding Task

Many clubs do not have the funds to pay for parties and events in the cafeteria. Therefore, Elvira lets club members, and their parents, volunteer for service hours and gives each club credit for the amount of volunteer hours they provide. There are three types of chores the volunteers can do: setting up tables, mopping the floors, and washing dishes. They can volunteer for weekday hours or for weekend hours, which earn more credits.

Elvira has recorded volunteer hours for the month of September for the drama club and the chess club in the following matrices:

<table>
<thead>
<tr>
<th>Drama Club</th>
<th>Chess Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekdays</td>
<td>weekdays</td>
</tr>
<tr>
<td>tables</td>
<td>12</td>
</tr>
<tr>
<td>floors</td>
<td>8</td>
</tr>
<tr>
<td>dishes</td>
<td>6</td>
</tr>
</tbody>
</table>

1. Write a matrix equation to show how you can combine these two matrices to find the total weekday and weekend volunteer hours for each type of chore.

2. Write a matrix equation to show how you can create a matrix that gives the total weekday and weekend volunteer hours for each type of chore that will be provided during the school year by the drama club.
Because it is harder to get volunteers for weekends than for weekdays, Elvira gives more credit for weekend hours than for weekday hours. She uses the following matrix to keep track of the dollars per hour earned on weekdays and weekends.

\[
\begin{bmatrix}
\$ \text{/hr} \\
\text{weekdays} & 4 \\
\text{weekends} & 6
\end{bmatrix}
\]

3. Write a matrix equation to show how you can combine two matrices to find the total credit earned by the Chess club during September for each type of chore.

Elvira is getting good at manipulating matrices, but realizes that sometimes she only needs one element in the sum or product matrix (for example, the cost of buying ingredients at Grandpa's Grocery on a specific day) and so she would like to be able to calculate a single result without completing the rest of the matrix operation. For the following matrix operations, calculate the indicated missing elements in the sum or product, without calculating the rest of the individual elements in the sum or product matrix.

4.
\[
\begin{bmatrix}
5 & -2 & 3 & 6 \\
7 & 1 & -4 & 2
\end{bmatrix} +
\begin{bmatrix}
1 & 3 & 5 & -7 \\
4 & -3 & 2 & 5
\end{bmatrix} =
\begin{bmatrix}
- & - & \boxed{} & - \\
- & \boxed{} & - & -
\end{bmatrix}
\]

5.
\[
\begin{bmatrix}
-2 & 3 \\
4 & -1 \\
2 & 5 \\
1 & 3
\end{bmatrix} \times
\begin{bmatrix}
2 & -3 & 4 \\
-1 & 5 & -2
\end{bmatrix} =
\begin{bmatrix}
- & \boxed{} & - \\
- & \boxed{} & -
\end{bmatrix}
\]
6. \[3 \cdot \begin{bmatrix} 2 & 4 \\ -1 & 5 \end{bmatrix} - 4 \cdot \begin{bmatrix} 2 & -3 \\ -5 & 4 \end{bmatrix} = \begin{bmatrix} \text{?} \\ \text{?} \end{bmatrix} \]

7. \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & \text{?} & 5 \\ 1 & \text{?} & \text{?} \\ \text{?} & \text{?} & \text{?} \end{bmatrix} \]
READY

Topic: Graph each relationship that is given by a table or a graph.

Graph each relationship that is given in the table or equation on the grid provided.

1. \(y = 3x - 5 \)

2. \[\begin{array}{c|c} x & y \\ \hline -1 & 5 \\ 0 & 7 \\ 1 & 9 \\ 2 & 11 \\ \end{array} \]

3. \(y = -2x \)

4. \[\begin{array}{c|c} x & y \\ \hline -5 & -1 \\ 10 & 2 \\ -30 & -6 \\ 25 & 5 \\ \end{array} \]

5. \(y = 6x - 7 \)
SET
Topic: Matrix Arithmetic

Perform each of the operations indicated on the matrices below.

6. \[
\begin{bmatrix}
-3 & 5 \\
4 & -7
\end{bmatrix}
\]
\[+
\begin{bmatrix}
8 & 9 \\
-6 & -5
\end{bmatrix}
\]

7. \[
\begin{bmatrix}
11 & -12 \\
-4 & 6
\end{bmatrix}
\]
\[-
\begin{bmatrix}
-15 & 9 \\
5 & 8
\end{bmatrix}
\]

8. \[
5 \times \begin{bmatrix}
4 & -2 & 9 \\
5 & 7 & -8
\end{bmatrix}
\]

9. \[
\begin{bmatrix}
6 & 7 & 8 \\
-3 & 5 & -2
\end{bmatrix}
\]
\[+
4 \begin{bmatrix}
-7 & 2 & 1 \\
1 & -2 & -5
\end{bmatrix}
\]

10. \[
4 \begin{bmatrix}
1 & 5 \\
7 & 6
\end{bmatrix}
\]

11. \[
3 \times \begin{bmatrix}
4 & 8 \\
0 & 7
\end{bmatrix}
\]-
\begin{bmatrix}
1 & 4 \\
7 & 5
\end{bmatrix}
\]

12. \[
\begin{bmatrix}
3 & 5 \\
4 & -7
\end{bmatrix}
\]
\[\times
\begin{bmatrix}
8 & 9 \\
6 & 0
\end{bmatrix}
\]

13. \[
\begin{bmatrix}
2 & 0 \\
1 & -2
\end{bmatrix}
\]
\[\times
\begin{bmatrix}
1 & 7 \\
3 & 5
\end{bmatrix}
\]

GO

Topic: Evaluating Expressions

Evaluate each expression below given \(x = 7, y = -3 \) and \(z = 5 \)

14. \[
\frac{xy-z}{2}
\]

15. \[
5x - 2^3 + (2y + z)^4
\]

16. \[
\frac{(z-3)^6}{6y-2x}
\]

17. \[
(6x - 5y + 4z)^2
\]

18. \[
\frac{2(x-z)}{6}
\]

19. \[
5(y - 6) - (y - 6) + 2y - 12
\]