Resource Title: Algebra One Mathematics Student Edition

Publisher: Mathematics Vision Project

ISBN: This is an e-book located at <u>http://www.mathematicsvisionproject.org</u>

Media: internet pdf

Authors: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, and Janet Sutorius

Copyright: Creative Commons License (CCBY 4.0)

Core Subject Area: Algebra I Mathematics

Mathematics, Algebra I

Standard	Designated Section
Domain: Number and Quantity	
Reason quantitatively and use units to solve problems.	
N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step	Module 4 Task 2 Elvira's Equations
problems; choose and interpret units consistently in formulas; choose and interpret the	Module 5 Task 5 All for One, One for All
scale and the origin in graphs and data displays.	
N.Q.2 Define appropriate quantities for the purpose of descriptive modeling.	Module 1 Task 1 Checkerboard Borders
	Module 4 Task 2 Elvira's Equations
	Module 5 Task 2 Too Big or Not Too Big, That is the
	Question
	Module 5 Task 5 All for One, One for All
N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when	Throughout curriculum
reporting quantities.	-

Extend the properties of exponents to rational exponents.	
N.RN.1 Explain how the definition of the meaning of rational exponents follows from	Module 2 Task 4 Experimenting with Exponents
extending the properties of integer exponents to those values, allowing for a notation for	Module 2 Task 5 Half Interested
radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5	Module 2 Task 6 More Interesting
because want $(r_1/3)_3 - r_1(1/3)_3$ to hold on $(r_1/3)_3$ must equal r	Module 2 Task 7 Radical Ideas
because we want $(5^{-1})^2 = 5^{-1}$ to note, so $(5^{-1})^2$ must equal 5.	
N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of	Module 2 Task 6 More Interesting
exponents.	Module 2 Task 7 Radical Ideas
Domain: Algebra	
Interpret the structure of expressions	
interpret the structure of expressions.	
A.SSE.1 Interpret expressions that represent a quantity in terms of its context.*	Module 1 Task 1 Checkerboard Borders
	Module 2 Task 9 Making My Point
a. Interpret parts of an expression, such as terms, factors, and coefficients.	Module 5 Task 6 More or Less
b. Interpret complicated expressions by viewing one or more of their parts as a single	Module 6 Task 1 Something to Talk About
entity. For example, interpret P(1+r) ⁿ as the product of P and a factor not depending	Module 6 Task 2 I Rule
on P.	Module 6 Task 5 Tortoise and Hare
	Module 7 Task 2 Building The Perfect Square
A.SSE.2 Use the structure of an expression to identify ways to rewrite it. <i>For example, see x</i> ⁴	Module 7 Task 6 Eactor Eivin'
$-y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as	Module 7 Task 9 Lining In Quadratics
$(x^2 - y^2)(x^2 + y^2).$	
Write expressions in equivalent forms to solve problems.	
A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain	Module 2 Task 6 More Interesting
properties of the quantity represented by the expression.	Module 2 Task 7 Radical Ideas
a. Factor a quadratic expression to reveal the zeros of the function it defines.	Module 2 Task 9 Making My Point
b. Complete the square in a quadratic expression to reveal the maximum or	Module 6 Task 4 Rabbit Run
minimum value of the function it defines.	Module 7 Task 6 Factor Fixin'
a. Use the properties of exponents to transform expressions for exponential	Module 7 Task 7 The x Factor
functions. For example the expression 1.15 ^t can be rewritten as $(1.15^{1/12})^{12t}$	Module 7 Task 8H The Wow Factor

\approx 1.012 ^{12t} to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	Module 7 Task 9 Lining Up Quadratics Module 7 Task 10 I've Got a Fill In
С.	
Perform arithmetic operations on polynomials.	
A.APR.1 Understand that polynomials form a system analogous to the integers, namely,	Module 3 Task 4 The Water Park
they are closed under the operations of addition, subtraction, and multiplication; add,	Module 3 Task 5 Pooling It Together
subtract, and multiply polynomials.	Module 3 Task 6 Interpreting Functions
	Module 3 Task 8 Match that Function
	Module 5 Task 7 Get to the Point!
Create equations that describe numbers or relationships.	
A.CED.1 Create equations and inequalities in one variable and use them to solve	Module 2 Task 9 Making My Point
problems. Include equations arising from linear and quadratic functions, and simple	Module 5 Task 3 Some of One, None of the Other
rational and exponential functions.	Module 5 Task 4 Pampering and Feeding Time
	Module 7 Task 12 Curbside Rivalry
A.CED.2 Create equations in two or more variables to represent relationships between	Module 3 Task 4 The Water Park
quantities; graph equations on coordinate axes with labels and scales.	Module 3 Task 5 Pooling It Together
	Module 5 Task 2 Too Big or Not Too Big, That is the
	Question
	Module 5 Task 3 Some of One, None of the Other
	Module 5 Task 4 Pampering and Feeding Time
	Module 5 Task 5 All for One, One for All
	Module 5 Task 6 More or Less
	Module 5 Task 8 Shopping for Cats and Dogs
	Module 5 Task 9 Food For Fido and Fluffy
	Module 6 Task 1 Something to Talk About
	Module 6 Task 2 I Rule
	Module 6 Task 4 Rabbit Run
	Module 6 Task 5 Tortoise and Hare

A.CED.3 Represent constraints by equations or inequalities, and by systems of equations	Module 3 Task 4 The Water Park
and/or inequalities, and interpret solutions as viable or non-viable options in a modeling	Module 3 Task 5 Pooling It Together
context. For example, represent inequalities describing nutritional and cost constraints on	Module 3 Task 6 Interpreting Functions
combinations of different foods.	Module 4 Task 2 Elvira's Equations
	Module 4 Task 3 Solving Equations Literally
	Module 5 Task 1 Pet Sitters
	Module 5 Task 4 Pampering and Feeding Time
	Module 5 Task 5 All for One, One for All
	Module 5 Task 6 More or Less
	Module 5 Task 9 Food For Fido and Fluffy
A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as	Module 4 Task 2 Elvira's Equations
in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Module 4 Task 3 Solving Equations Literally
	Module 5 Task 3 Some of One, None of the Other
	Module 7 Task 11 Throwing an Interception
	Module 7 Task 12 Curbside Rivalry
Understand solving equations as a process of reasoning and explain the reasoning.	
A.REI.1 Explain each step in solving a simple equation as following from the equality of	Module 4 Task 1 Cafeteria Actions and Reactions
numbers asserted at the previous step, starting from the assumption that the original	Module 4 Task 3 Solving Equations Literally
equation has a solution. Construct a viable argument to justify a solution method.	Module 4 Task 4 Greater Than
	Module 4 Task 5 May I Have More, Please?
	Module 4 Task 6 Taking Sides
Solve equations and inequalities in one variable.	
A.REI.3 Solve linear equations and inequalities in one variable, including equations with	Module 1 Task 9 What Does It Mean?
coefficients represented by letters.	Module 1 Task 10 Geometric Meanies
	Module 4 Task 2 Elvira's Equations
	Module 4 Task 3 Solving Equations Literally
	Module 4 Task 4 Greater Than
	Module 4 Task 5 May I Have More, Please?
	Module 4 Task 6 Taking Sides
A.REI.4 Solve quadratic equations in one variable.	Module 7 Task 11 Throwing an Interception
	Module 7 Task 12 Curbside Rivalry

a. Use the method of completing the square to transform any quadratic equation in	
x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.	
b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$) taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for the real numbers and a and b.	
Solve systems of equations.	
A.REI.5 Prove that, given a system of two equations in two variables, replacing one	Module 5 Task 7 Get to the Point
equation by the sum of that equation and a multiple of the other produces a system with	Module 5 Task 8 Shopping for Cats and Dogs
the same solutions.	Module 5 Task 9 Can You Get to the Point, Too?
	Module 5 Task 10 Taken Out of Context
A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs),	Module 5 Task 7 Get to the Point
focusing on pairs of linear equations in two variables.	Module 5 Task 8 Shopping for Cats and Dogs
	Module 5 Task 9 Can You Get to the Point, Too?
	Module 5 Task 10 Taken Out of Context
A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in	Module 7 Task 12 Curbside Rivalry
two variables algebraically and graphically. For example, find the points of intersection	
between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	Solving systems between different function types occur
Depresent and aske equations and in qualities graphically	throughout rest of curriculum (after Module 5)
Represent and solve equations and inequalities graphically.	
A.REI.8 (+) Represent a system of linear equations as a single matrix equation in a vector	Module 5 Task 11H To Market with Matrices
variable.	Module 5 Task 12H Solving Systems with Matrices
A.REI.10 Understand that the graph of an equation in two variables is the set of all its	Module 2 Task 4 Experimenting with Exponents
solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Module 2 Task 5 Half Interested
	Module 3 Task 4 The Water Park
	Module 3 Task 5 Pooling It Together
	Module 3 Task 6 Interpreting Functions
	Module 3 Task 8 Match that Function
	Module 5 Task 2 Too Big or Not Too Big, That is the
	Question

	Module 5 Task 3 Some of One, None of the Other
	Module 5 Task 7 Get to the Point!
A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y =$	Module 3 Task 4 The Water Park
f(x) and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions	Module 3 Task 6 Interpreting Functions
approximately, e.g., using technology to graph the functions, make tables of values, or find	Module 5 Task 3 Some of One, None of the Other
successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial,	Module 5 Task 4 Pampering and Feeding Time
rational, absolute value, exponential, and logarithmic functions.*	
A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane	Module 5 Task 2 Too Big or Not Too Big, That is the
(excluding the boundary in the case of a strict inequality), and graph the solution set to a	Question
system of linear inequalities in two variables as the intersection of the corresponding half-	Module 5 Task 3 Some of One, None of the Other
planes.	Module 5 Task 4 Pampering and Feeding Time
	Module 5 Task 5 All for One, One for All
	Module 5 Task 6 More or Less
Domain: Function	
Understand the concept of a function and use function notation.	
F.IF.1 Understand that a function from one set (called the domain) to another set (called	Module 3 Task 5 Pooling It Together
the range) assigns to each element of the domain exactly one element of the range. If f is a	Module 3 Task 6 Interpreting Functions
function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding	Module 3 Task 8 Match that Function
to the input x. The graph of f is the graph of the equation $y = f(x)$.	Module 3 Task 7 To Function or Not to Function
	Throughout curriculum
F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret	Module 3 Task 4 The Water Park
statements that use function notation in terms of a context.	Module 3 Task 6 Interpreting Functions
	Module 6 Task 2 I Rule
F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose	Module 2 Task 1 Piggies and Pools
domain is a subset of the integers. For example, the Fibonacci sequence is defined	Module 2 Task 2 Shh! Please be Discreet (Discrete)
recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.	Module 3 Task 7 To Function or Not to Function
Interpret functions that arise in applications in terms of a context.	1

F.IF.4 For a function that models a relationship between two quantities, interpret key	Module 3 Task 1 Getting Ready for a Pool Party
features of graphs and tables in terms of the quantities, and sketch graphs showing key	Module 3 Task 2 Floating Down the River
features given a verbal description of the relationship. Key features include: intercepts;	Module 3 Task 3 Features of Functions
intervals where the function is increasing, decreasing, positive, or negative; relative	Module 3 Task 4 The Water Park
maximums and minimums; symmetries; end behavior; and periodicity.	Module 3 Task 6 Interpreting Functions
	Module 3 Task 8 Match that Function
	Module 8 Task 7 More Features, More Functions
F.IF.5 Relate the domain of a function to its graph and, where applicable, to the	Module 3 Task 1 Getting Ready for a Pool Party
quantitative relationship it describes. For example, if the function h(n) gives the number of	Module 3 Task 2 Floating Down the River
person-hours it takes to assemble n engines in a factory, then the positive integers would	Module 3 Task 3 Features of Functions
be an appropriate domain for the function.	Module 3 Task 6 Interpreting Functions
	Module 8 Task 1 Some of This, Some of That
	Module 8 Task 2 Bike Lovers
	Module 8 Task 3 More Functions with Features
	Module 8 Task 4 Reflections of a Bike Lover
F.IF.6 Calculate and interpret the average rate of change of a function (presented	Module 3 Task 1 Getting Ready for a Pool Party
symbolically or as a table) over a specified interval. Estimate the rate of change from a	Module 3 Task 2 Floating Down the River
graph.	Module 3 Task 6 Interpreting Functions
	Module 6 Task 5 Tortoise and Hare
Analyze functions using different representations.	
F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand	Module 2 Task 8 Getting Down to Business
in simple cases and using technology for more complicated cases.	Module 2 Task 10 Form Follows Function
a. Graph linear and guadratic functions and show intercepts, maxima, and minima.	Module 3 Task 4 The Water Park
b. Graph square root, cube root, and piecewise-defined functions, including step	Module 3 Task 6 Interpreting Functions
functions and absolute value functions.	Module 7 Task 1 Transformers: Shifty v's
e. Graph exponential and logarithmic functions, showing intercepts and end behavior.	Module 7 Task 2 Transformer's: More Than Meets the v's
and trigonometric functions, showing period, midline, and amplitude.	Module 8 Task 1 Some of This. Some of That
	Module 8 Task 2 Bike Lovers
	Module 8 Task 3 More Functions with Features
	Module 8 Task 4 Reflections of a Bike Lover
F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal	Module 2 Task 6 More Interesting
and explain different properties of the function.	Module 7 Task 3 Building the Perfect Square
	Module 7 Task 4 A Square Deal
	Module 2 Task 5 Lining Up Quadratics

a. Use the process of factoring and completing the square in a quadratic function to	Module 2 Task 6 I've Got a Fill-in
show zeros, extreme values, and symmetry of the graph, and interpret these in	Module 3 Task 3 More Interesting
terms of a context.	Module 7 Task 5 Be There or Be Square
b. Use the properties of exponents to interpret expressions for exponential	Module 7 Task 6 Factor Fixin'
functions. For example, identify percent rate of change in functions such as y =	Module 7 Task 7 The x Factor
$(1.02)^{t}$ y = $(0.97)^{t}$ y = $(1.01)^{12t}$ y = $(1.2)^{t}/10$ and classify them as representing	Module 7 Task 8H The Wow Factor
(1.02), $y = (0.05)$, $y = (1.01)$, $y = (1.2)$, and classify them as representing exponential arowth or decay	Module 7 Task 9 Lining Up Quadratics
	Module 7 Task 10 I've Got a Fill In
F.IF.9 Compare properties of two functions each represented in a different way	Module 2 Task 8 Getting Down to Business
(algebraically, graphically, numerically in tables, or by verbal descriptions). For example,	Module 3 Task 5 Pooling It Together
given a graph of one quadratic function and an algebraic expression for another, say which	Module 3 Task 6 Interpreting Functions
has the larger maximum.	Module 3 Task 8 Match that Function
	Module 8 Task 4 Training Day
	Module 8 Task 5 Training Day Part II
	Module 8 Task 6 Shifting Functions
Build a function that models a relationship between two quantities.	
F.BE.1 Write a function that describes a relationship between two quantities. [*]	Module 1 Task 2 Growing Dots
	Module 1 Task 3 Growing Growing Dots
a. Determine an explicit expression, a recursive process, or steps for calculation from	Module 1 Task 4 Scott's Workout
a context.	Module 1 Task 5 Don't Break the Chain
b. Combine standard function types using arithmetic operations. For example, build a	Module 1 Task 6 Something to Chew On
function that models the temperature of a coolina body by addina a constant	Module 1 Task 7 Chew On This
function to a decaving exponential, and relate these functions to the model.	Module 1 Task 8 What Comes Next? What Comes Later?
j	Module 1 Task 11 Know What Do You Know?
	Module 2 Task 2 Shh! Please be Discreet (Discrete)
	Module 3 Task 6 Interpreting Functions
	Module 6 Task 1 Something to Talk About
	Module 6 Task 2 I Rule
	Module 6 Task 3 Scott's Macho March
	Module 6 Task 4 Rabbit Run
	Module 6 Task 5 Tortoise and Hare
	Module 7 Task 6 Factor Fixin'
	Module 7 Task 7 The x Factor
	Module 7 Task 9 Lining Up Quadratics

	Module 7 Task 10 I've Got a Fill In
	Module 7 Task 8H The Wow Factor
F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit	Module 2 Task 8 Getting Down to Business
formula, use them to model situations, and translate between the two forms.	Module 6 Task 3 Scott's Macho March
	Throughout Modules 1, 2 and 6
Build new functions from existing functions.	
F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + x)$	Module 6 Task 3 Scott's Macho March
k) for specific values of k (both positive and negative); find the value of k given the graphs.	Module 7 Task 1 Transformers: Shifty y's
Experiment with cases and illustrate an explanation of the effects on the graph using	Module 7 Task 2 Transformer's: More Than Meets the y's
technology. Include recognizing even and odd functions from their graphs and algebraic	Module 8 Task 4 Training Day
expressions for them.	Module 8 Task 5 Training Day Part II
	Module 8 Task 6 Shifting Functions
F.BF.4 Find inverse functions.	Module 8 Task 5 What's Your Pace?
	Module 8 Task 6 Bernie's Bikes
a. Solve an equation of the form f(x)=c for a simple function f that has an inverse and write	
an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = \frac{x+1}{x-1}$ for $x \neq 1$.	
Construct and compare linear, quadratic, and exponential models and solve problems.	
F.LE.1 Distinguish between situations that can be modeled with linear functions and with	Module 1 Task 2 Growing Dots
exponential functions.	Module 1 Task 3 Growing, Growing Dots
	Module 1 Task 4 Scott's Workout
a. Prove that linear functions grow by equal differences over equal intervals;	Module 1 Task 5 Don't Break the Chain
exponential functions grow by equal factors over equal intervals.	Module 1 Task 6 Something to Chew On
b. Recognize situations in which one quantity changes at a constant rate per unit	Module 1 Task 7 Chew On This
interval relative to another.	Module 1 Task 8 What Comes Next? What Comes Later?
c. Recognize situations in which a quantity grows or decays by a constant percent	Module 1 Task 11 I Know What Do You Know?
rate per unit interval relative to another.	Module 1 Task 9 What Does It Mean?
	Module 1 Task 10 Geometric Meanies
	Module 1 Task 11 I Know What Do You Know?
	Module 2 Task 2 Shh! Please be Discreet (Discrete)
	Module 6 Task 3 Scott's Macho March

	Module 6 Task 6 How does it Grow?
F.LE.2 Construct linear and exponential functions, including arithmetic and geometric	Module 1 Task 2 Growing Dots
sequences, given a graph, a description of a relationship, or two input-output pairs (include	Module 1 Task 3 Growing, Growing Dots
reading these from a table).	Module 1 Task 4 Scott's Workout
	Module 1 Task 5 Don't Break the Chain
	Module 1 Task 6 Something to Chew On
	Module 1 Task 7 Chew On This
	Module 1 Task 8 What Comes Next? What Comes Later?
	Module 1 Task 11 I Know What Do You Know?Linear,
	Module 2 Task 2 Shh! Please be Discreet (Discrete)
	Module 2 Task 8 Getting Down to Business
	Module 2 Task 10 Form Follows Function
	Module 6 Task 3 Scott's Macho March
	Module 6 Task 6 How does it Grow?
F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually	Module 2 Task 3 Linear, Exponential or Neither
exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial	Module 2 Task 8 Getting Down to Business
function.	Module 6 Task 3 Scott's Macho March
	Module 6 Task 5 Tortoise and Hare
	Module 6 Task 6 How does it Grow?
Interpret expressions for functions in terms of the situation they model.	
F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context.	Module 1 Task 2 Growing Dots
	Module 1 Task 3 Growing, Growing Dots
	Module 1 Task 4 Scott's Workout
	Module 1 Task 5 Don't Break the Chain
	Module 1 Task 6 Something to Chew On
	Module 2 Task 3 Linear, Exponential or Neither
	Module 2 Task 8 Getting Down to Business
	Module 2 Task 9 Making My Point
	Module 2 Task 10 Form Follows Function
	Module 6 Task 3 Scott's Macho March
Domain: Statistics	
Summarize, represent, and interpret data on a single count or measurement variable.	

S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box	Module 9 Task 1 Texting By the Numbers
plots).	Module 9 Task 2 Data Distributions
S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center	Module 9 Task 1 Texting By the Numbers
(median, mean) and spread (interquartile range, standard deviation) of two or more	Module 9 Task 2 Data Distributions
different data sets.	
S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets,	Module 9 Task 1 Texting By the Numbers
accounting for possible effects of extreme data points (outliers).	Module 9 Task 2 Data Distributions
Summarize, represent, and interpret data on two categorical and quantitative variables.	
S.ID.5 Summarize categorical data for two categories in two-way frequency tables.	Module 9 Task 3 After School Activities
Interpret relative frequencies in the context of the data (including joint, marginal, and	Module 9 Task 4 Relative Frequency
conditional relative frequencies). Recognize possible associations and trends in the data.	
S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the	Module 2 Task 4 Experimenting with Exponents
variables are related.	Module 2 Task 5 Half Interested
	Module 9 Task 6 Making More \$
a. Fit a function to the data; use functions fitted to data to solve problems in the context of	Module 9 Task 7 Getting Schooled
the data. Use given functions or choose a function suggested by the context. <i>Emphasize</i>	Module 9 Task 8 Rocking the Residuals
linear and exponential models.	Module 9 Task 9 Lies and Statistics
b. Informally assess the fit of a function by plotting and analyzing residuals.	
Interpret linear models.	
S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear	Module 9 Task 6 Making More \$
model in the context of the data.	Module 9 Task 7 Getting Schooled
	Module 9 Task 9 Lies and Statistics
S.ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	Module 9 Task 5 Connect the Dots
	Module 9 Task 6 Making More \$
	Module 9 Task 7 Getting Schooled
	Module 9 Task 9 Lies and Statistics
S.ID.9 Distinguish between correlation and causation.	Module 9 Task 5 Connect the Dots