Resource Title: Algebra II Mathematics Student Edition

Publisher: Mathematics Vision Project

ISBN: This is an e-book located at http://www.mathematicsvisionproject.org

Media: internet pdf

Authors: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, and Janet Sutorius

Copyright: Creative Commons License

Core Subject Area: Algebra II Mathematics

Mathematics, Algebra II

Standard	Designated Section
Domain: Number and Quantity	
Perform arithmetic operations with complex numbers.	
N.CN.1 Know there is a complex number i that $i^2 = -1$, and every complex number has the form $a + bi$ with a and b real.	Module 3 Task 5 My Irrational and Imaginary Friends
N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	Module 3 Task 5 My Irrational and Imaginary Friends
Use Complex numbers in polynomial identities and equations.	
N.CN.7 Solve quadratic equations with real coefficients that have complex solutions.	Module 3 Task 4 To Be Determined Module 3 Task 5 My Irrational and Imaginary Friends
N.CN.8 Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.	Module 3 Task 4 To Be Determined Module 3 Task 5 My Irrational and Imaginary Friends

	Module 4 Task 4 Getting to the Root of the Problem
	Module 4 Task 6 Puzzling Over Polynomials
N.CN.9 Know the Fundamental Theorem of Algebra; show that it is true for quadratic	Module 3 Task 4 To Be Determined
polynomials.	Module 3 Task 5 My Irrational and Imaginary Friends
	Module 4 Task 3 Building Stronger Roots
	Module 4 Task 4 Getting to the Root of the Problem
	Module 4 Task 6 Puzzling Over Polynomials
Use properties of rational and irrational numbers.	
N.RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of	Module 3 Task 5 My Irrational and Imaginary Friends
a rational number and an irrational number is irrational; and that the product of a nonzero	Module 3 Task 6 Sorry, We're Closed
rational number and an irrational number is irrational.	
Domain: Algebra	
Interpret the structure of expressions.	
A.SSE.1 Interpret expressions that represent a quantity in terms of its context. ★	Module 4 Task 3 Building Stronger Roots
a. Interpret parts of an expression, such as terms, factors, and coefficients.	Module 4 Task 5 Is This the End
b. Interpret complicated expressions by viewing one or more of their parts as a	
single entity. For example, interpret $P(1+r)^n$ as the product of P and a factor not	
depending on P.	
A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see	**A.SSE.2 is throughout Module 3 and 4, both in the tasks
$x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as	and in the RSG's.
$(x^2 - y^2)(x^2 + y^2)$.	
Write expressions in equivalent forms to solve problems.	
A.SSE.4 Derive the formula for the sum of a finite geometric series (when the common ratio	
is not 1), and use the formula to solve problems. For example, calculate mortgage	
payments. ★	
Perform arithmetic operations on polynomials.	
A.APR.1 Understand that polynomials form a system analogous to the integers; namely,	Module 3 Task 1 It All Adds Up
they are closed under the operations of addition, subtraction, and multiplication; add,	Module 3 Task 2 Pascal's Pride

subtract, and multiply polynomials.	Module 3 Task 3 Divide and Conquer
	Module 3 Task 6 Sorry, We're Closed
Understand the relationship between zeros and factors of polynomials.	
A.APR.2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a , the remainder on division by x - a is a factor of $p(x)$.	Module 3 Task 3 Divide and Conquer
A.APR.3 Identify zeros of polynomials when suitable factorizations are available, and use	Module 4 Task 3 Building Stronger Roots
the zeros to construct a rough graph of the function defined by the polynomial.	Module 4 Task 4 Getting to the Root of the Problem
	Module 4 Task 6 Puzzling Over Polynomials
Use polynomial identities to solve problems.	
A.APR.4 Prove polynomial identities and use them to describe numerical relationships. For	**A.APR.4 is throughout Module 3 and 4, both in the tasks
example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.	and in the RSG's.
A.APR.5 Know and apply the Binomial Theorem for the expansion of $(x+y)^n$ in powers of x and y for a positive integer n , where x and y are any given numbers, with coefficients determined by example by Pascal's Triangle.	Module 3 Task 2 Pascal's Pride
Rewrite rational expressions.	
A.APR.6 Rewrite simple rational expressions in different forms; write $\frac{a(x)}{b(x)}$ in the form	Module 5 Task 4 Are You Rational
$q(x) + \frac{r(x)}{b(x)}$ where $a(x), b(x), q(x)$ and $r(x)$ are polynomials with degree of $r(x)$ less than	
the degree of $b(x)$, using inspection, long division, or for the more complicated examples, a	
computer algebra system.	
A.APR.7 Understand the rational expressions form a system analogous to the rational	Module 5 Task 4 Are You Rational
numbers, closed under addition, subtraction, multiplication, and division by a nonzero	Module 5 Task 5 Just Act Rational
rational expression; add, subtract, multiply and divide rational expressions.	
Create equations that describe numbers or relationships.	
A.CED.1 Create equations and inequalities in one variable and use them to solve	**A.CED.1 is introduced and solidified in Algebra I and then
problems. <i>Include equations arising from linear and quadratic functions, and simple rational</i>	implemented throughout curriculum
and exponential functions.	
A.CED.2 Create equations in two or more variables to represent relationships between	Module 4 Task 1 Scott's March Madness
quantities; graph equations on coordinate axes with labels and scales.	Module 4 Task 6 Puzzling Over Polynomials

Module 5 Task 1 Winner, Winner
Module 5 Task 2 Shift and Stretch
Module 5 Task 3 Rational Thinking
**A.CED.3 is introduced and solidified in Algebra I and then
implemented throughout curriculum
**A.CED.4 is introduced and solidified in Algebra I and then
implemented throughout curriculum
Module 5 Task 7 We All Scream
**A.REI.2 is found in several RSG's throughout Module 5
**A.REI.11 is introduced and solidified in Algebra I and then
implemented throughout curriculum
Module 4 Task 2 You-mix Cubes
Module 4 Task 5 Is This the End?
Module 5 Task 6 Sign on the Dotted Line
Module 6 Task 4 More Ferris Wheels
Module 4 Task 2 You-mix Cubes
Module 5 Task 1 Winner, Winner
Module 5 Task 3 Rational Thinking
_
**F.IF.6 is introduced in Algebra I and then occurs throughout

graph.★	
Analyze functions using different representations.	
F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand	Module 2 Task 2 Falling Off a Log
in simple cases and using technology for more complicated cases.★	Module 3 Task 1 It All Adds Up
, , , , , , , , , , , , , , , , , , ,	Module 4 Task 2 You-mix Cubes
b. Graph square root, cube root, and piecewise-defined functions, including step	Module 5 Task 1 Winner, Winner
functions and absolute value functions.	Module 5 Task 2 Shift and Stretch
c. Graph polynomial functions, identifying zeros when suitable factorizations are	Module 5 Task 3 Rational Thinking
available, and showing end behavior.	Module 5 Task 6 Sign on the Dotted Line
e. e. Graph exponential and logarithmic functions, showing intercepts and end	
behavior, and trigonometric functions, showing period, midline, and amplitude.	
F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal	Module 2 Task 3 Chopping Logs
and explain different properties of the function.	Module 2 Task 4 Log-Arithm-etic
F.IF.9 Compare properties of two functions each represented in a different way	**F.IF.9 is introduced and solidified in Algebra I and then
(algebraically, graphically, numerically in tables, or by verbal descriptions). For example,	implemented throughout curriculum
given a graph of one quadratic function and an algebraic expression for another, say which	
has the larger maximum.	
Build a function that models a relationship between two quantities.	
B.BF.1 Write a function that describes a relationship between two	Module 1 Task 1 Brutus Bites Back
quantities.*	Module 1 Task 2 Flipping Ferraris
b. Combine standard function types using arithmetic operations.	Module 1 Task 3 Tracking the Tortoise
For example, build a function that models the temperature of a	Module 3 Task 1 It All Adds Up
cooling body by adding a constant function to a decaying exponential,	Module 3 Task 6 Sorry, We're Closed
and relate these functions to the model.	Module 4 Task 1 Scott's March Madness
	Module 8 Task 2 Imagineering
	Module 8 Task 3 The Bungee Jump Simulator
	Module 8 Task 4 Composing and Decomposing
	Module 8 Task 5 Translating My Composition
	Module 8 Task 6 Different Combinations
Build new functions that exist from existing functions.	
F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for	Module 2 Task 2 Falling Off a Log

specific values of <i>k</i> (both positive and negative); find the value of <i>k</i> given the graphs.	Module 4 Task 2 You-mix Cubes
Experiment with cases and illustrate an explanation of the effects on the graph using	Module 4 Task 5 Is This the End?
technology. Include recognizing even and odd functions from their graphs and algebraic	Module 5 Task 2 Shift and Stretch
expressions for them.	Module 6 Task 4 More Ferris Wheels
expressions for them.	Module 7 Task 1 High Noon and Sunset Shadows
	Module 7 Task 3 Getting on the Right Wavelength
	Module 8 Task 1 Function Family Reunion
	Module 8 Task 5 Translating My Composition
F.BF.4 Find inverse functions.	Module 1 Task 1 Brutus Bites Back
a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse	Module 1 Task 2 Flipping Ferraris
and write an expression for the inverse. For example, $f(x) = 2 \times 3$ or $f(x) = (x+1)/(x-1)$	Module 1 Task 3 Tracking the Tortoise
for $x \neq 1$.	Module 1 Task 4 Pulling a Rabbit Out of a Hat
JOT X / 21	Module 1 Task 5 Inverse Universe
	Module 7 Task 2 High Tide
	Module 7 Task 3 Getting on the Right Wavelength
F.BF.5(+) Understand the inverse relationship between exponents and logarithms and use	Module 2 Task 1 Log Logic
this relationship to solve problems involving logarithms and exponents.	Module 2 Task 2 Falling Off a Log
Construct and compare linear, quadratic and exponential models and solve problems.	
F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually	Module 4 Task 1 Scott's March Madness
exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	Module 4 Task 5 Is This the End?
F.LE.4 For exponential models, express as a logarithm the solution to $ab^{ct} =$	Module 2 Task 1 Log Logic
d where a, c and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using	Module 2 Task 3 Chopping Logs
technology.	Module 2 Task 4 Log-Arithm-etic
•	Module 2 Task 5 Powerful Tens
Extend the domain of trigonometric functions using the unit circle.	
F.TF.1 Understand radian measure of an angle as the length of the arc on the unit circle	Module 6 Task 6 Diggin' It
subtended by the angle.	Module 6 Task 7 Staking It
	Module 6 Task 8 "Sine"ing and "Cosine"ing It
	Module 6 Task 9 Water Wheels and Unit Circle
F.TF.2 Explain how the unit circle in the coordinate plane enables the extension of	Module 6 Task 3 More "Sine" Language
trigonometric functions to all real numbers, interpreted as radian measures of angles	Module 6 Task 5 Moving Shadows

traversed counterclockwise around the unit circle.	Module 6 Task 6 Diggin' It
traversed counterclockwise around the unit circle.	Module 6 Task 7 Staking It
	Module 6 Task 8 "Sine"ing and "Cosine"ing It
	Module 6 Task 9 Water Wheels and Unit Circle
	Module 7 Task 4 Off on a Tangent
Model periodic phenomena with trigonometric functions.	Woodie 7 Task 4 Off off a Taligetit
woder periodic phenomena with thigonometric functions.	
F.TF.5 Choose trigonometric functions to model periodic phenomena with specified	Module 6 Task 1 George W. Ferris' Day Off
amplitude, frequency, and midline. ★	Module 6 Task 2 "Sine" Language
	Module 6 Task 4 More Ferris Wheels
	Module 6 Task 5 Moving Shadows
	Module 7 Task 1 High Noon and Sunset Shadows
	Module 7 Task 2 High Tide
	Module 7 Task 3 Getting on the Right Wavelength
	Module 7 Task 4 Off on a Tangent
Prove and apply trigonometric identities.	
F.TF.8 Prove the Pythagorean identity $sin^2(\theta) + cos^2(\theta) = 1$ and use it to find sin (θ), cos	Module 7 Task 5 Maintaining Your Identity
(θ) , or tan (θ) , given sin (θ) , cos (θ) , or tan (θ) , and the quadrant of the angle.	
Domain: Statistics	
Summarize, represent and interpret data on a single count or measurement system.	
S.ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution	Module 9 Task 1 What is Normal?
and to estimate population percentages. Recognize that there are data sets for which such	Module 9 Task 2 Just Act Normal
a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas	Module 9 Task 3 Y B Normal?
under the normal curve.	Module 9 Task 4 Wow! That's Weird!
Understand and evaluate random processes underlying statistical experiments.	
S.IC.1 Understand that statistics allows inferences to be made about population parameters	Module 9 Task 5 Would You Like to Try a Sample?
based on a random sample from that population.	Module 9 Task 6 Let's Investigate
transa a sa	Module 9 Task 7 Slacker's Simulation
S.IC.2 Decide if a specified model is consistent with results from a given data-generating	Module 9 Task 6 Let's Investigate
·	0
process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of five tails in a row cause you to question the model?	

Make inferences and justify conclusions from sample surveys, experiments and observational studies.		
S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and	Module 9 Task 6 Let's Investigate	
observational studies; explain how randomization relates to each.	Module 9 Task 7 Slacker's Simulation	
S.IC.4 Use data from a sample survey to estimate a population mean or proportion; develop	Module 9 Task 5 Would You Like to Try a Sample?	
a margin of error through the use of simulation models for random sampling.		
S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations		
to decide if differences between parameters are significant.		
S.IC.6 Evaluate reports based on data.		
Use probability to evaluate outcomes of decisions.		
S.MD.6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random		
number generator).		
S.MD.7 (+) Analyze decisions and strategies using probability concepts (e.g., product		
testing, medical testing, pulling a hockey goalie at the end of a game).		