Resource Title: Secondary One Mathematics Student Edition

Publisher: Mathematics Vision Project

ISBN: This is an e-book located at <u>http://www.mathematicsvisionproject.org</u>

Media: internet pdf

Authors: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, and Janet Sutorius

Copyright: Creative Commons License (CCBY 4.0)

Core Subject Area: Secondary I Mathematics

Mathematics, Secondary I

Number and Quantity	
Reason quantitatively and use units to solve problems.	
N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Module 4 Task 2 Elvira's Equations
N.Q.2 Define appropriate quantities for the purpose of descriptive modeling.	Module 1 Task 1 Checkerboard Borders Module 4 Task 2 Elvira's Equations
N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Throughout curriculum
Algebra	

Interpret the structure of expressions.	
A.SSE.1 Interpret expressions that represent a quantity in terms of its context.*	Module 1 Task 1 Checkerboard Borders Module 2 Task 5 Making My Point
a. Interpret parts of an expression, such as terms, factors, and coefficients.	
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^n$ as the product of P and a factor not depending on P.	
Create equations that describe numbers or relationships.	1
A.CED.1 Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic functions, and simple rational and exponential functions.</i>	Module 2 Task 1 Piggies and Pools
A.CED.2 Create equations in two or more variables to represent relationships between	Module 2 Task 5 Making My Point
quantities; graph equations on coordinate axes with labels and scales.	Module 5 Task 2 Too Big or Not Too Big, That is the
	Question
	Module 5 Task 3 Some of One, None of the Other
	Module 5 Task 4 Pampering and Feeding Time
A.CED.3 Represent constraints by equations or inequalities, and by systems of equations	Module 3 Task 4 The Water Park
and/or inequalities, and interpret solutions as viable or non-viable options in a modeling	Module 3 Task 5 Pooling It Together
context. For example, represent inequalities describing nutritional and cost constraints on	Module 3 Task 6 Interpreting Functions
combinations of different foods.	Module 5 Task 1 Pet Sitters
	Module 5 Task 4 Pampering and Feeding Time
	Module 5 Task 5 All for One, One for All
	Module 5 Task 6 More or Less
A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as	Module 4 Task 2 Elvira's Equations
in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Module 4 Task 3 Solving Equations Literally
	Module 5 Task 3 Some of One, None of the Other

Understand solving equations as a process of reasoning and explain the reasoning.	
A.REI.1 Explain each step in solving a simple equation as following from the equality of	Module 4 Task 1 Cafeteria Actions and Reactions
numbers asserted at the previous step, starting from the assumption that the original	Module 4 Task 3 Solving Equations Literally
equation has a solution. Construct a viable argument to justify a solution method.	Module 4 Task 4 Greater Than
	Module 4 Task 5 May I Have More, Please?
	Module 4 Task 6 Taking Sides
Solve equations and inequalities in one variable.	
A.REI.3 Solve linear equations and inequalities in one variable, including equations with	Module 1 Task 9 What Does It Mean?
coefficients represented by letters.	Module 1 Task 10 Geometric Meanies
	Module 4 Task 2 Elvira's Equations
	Module 4 Task 3 Solving Equations Literally
	Module 4 Task 4 Greater Than
	Module 4 Task 5 May I Have More, Please?
	Module 4 Task 6 Taking Sides
Solve systems of equations.	
A.REI.5 Prove that, given a system of two equations in two variables, replacing one	Module 5 Task 8 Shopping for Cats and Dogs
equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	Module 5 Task 9 Can You Get to the Point, Too?
A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs),	Module 5 Task 7 Get to the Point
focusing on pairs of linear equations in two variables.	Module 5 Task 8 Shopping for Cats and Dogs
	Module 5 Task 9 Can You Get to the Point, Too?
	Module 5 Task 10 Taken Out of Context
Represent and solve equations and inequalities graphically.	
A.REI.10 Understand that the graph of an equation in two variables is the set of all its	Module 5 Task 7 Get to the Point!
solutions plotted in the coordinate plane, often forming a curve (which could be a line).	
A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y =$	Module 3 Task 4 The Water Park
f(x) and $y = q(x)$ intersect are the solutions of the equation $f(x) = q(x)$; find the solutions	Module 3 Task 5 Pooling It Together
approximately, e.g., using technology to graph the functions, make tables of values, or find	Module 3 Task 6 Interpreting Functions

successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. [*]	Module 3 Task 8 It's A Match!
A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Module 5Task 2Too Big or Not Too Big, That is the QuestionModule 5Task 3Some of One, None of the Other Module 5Module 5Task 4Pampering and Feeding Time Module 5Module 5Task 5All for One, One for All Module 5Module 5Task 6More or Less
Function Understand the concept of a function and use function notation.	
F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	Module 3 Task 7 To Function or Not to Function Throughout curriculum
F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Module 3 Task 4 The Water Park Module 3 Task 5 Pooling It Together Module 3 Task 6 Interpreting Functions Module 3 Task 8 It's A Match!
F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.	Module 2Task 1Piggies and PoolsModule 2Task 2Shh! Please Be Discreet! (Discrete)Module 3Task 7To Function or Not to Function
Interpret functions that arise in applications in terms of a context.	
F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.</i>	Module 3Task 1Getting Ready for a Pool PartyModule 3Task 2Floating Down the RiverModule 3Task 3Features of FunctionsModule 3Task 4The Water ParkModule 3Task 5Pooling It TogetherModule 3Task 6Interpreting Functions

		Module 3 Task 8 It's A Match!
F.IF.	5 Relate the domain of a function to its graph and, where applicable, to the	Module 3 Task 2 Floating Down the River
	ntitative relationship it describes. For example, if the function h(n) gives the number of	Module 3 Task 3 Features of Functions
•	on-hours it takes to assemble n engines in a factory, then the positive integers would	Module 3 Task 4 The Water Park
•	n appropriate domain for the function.	Module 3 Task 5 Pooling It Together
		Module 3 Task 6 Interpreting Functions
		Module 3 Task 8 It's A Match!
F.IF.	6 Calculate and interpret the average rate of change of a function (presented	Module 2 Task 7H I Can See—Can't You?
	bolically or as a table) over a specified interval. Estimate the rate of change from a	
<u> </u>	yze functions using different representations.	
F.IF.	7 Graph functions expressed symbolically and show key features of the graph, by hand	Module 2 Task 4 Getting Down to Business
in sir	mple cases and using technology for more complicated cases.	Module 2 Task 6 Form Follows Function
		Module 3 Task 4 The Water Park
a.	Graph linear and quadratic functions and show intercepts, maxima, and minima.	Module 3 Task 5 Pooling It Together
e.	Graph exponential and logarithmic functions, showing intercepts and end behavior,	Module 3 Task 6 Interpreting Functions
	and trigonometric functions, showing period, midline, and amplitude.	Module 3 Task 8 It's A Match!
F.IF.	9 Compare properties of two functions each represented in a different way	Module 8 Task 4 Training Day
(alge	braically, graphically, numerically in tables, or by verbal descriptions).	Module 8 Task 5 Training Day Part II
		Module 8 Task 6 Shifting Functions
Build	d a function that models a relationship between two quantities.	
F.BF	f 1 Write a function that describes a relationship between two quantities. $f *$	Module 1 Task 2 Growing Dots
		Module 1 Task 3 Growing, Growing Dots
a.	Determine an explicit expression, a recursive process, or steps for calculation from	Module 1 Task 4 Scott's Workout
	a context.	Module 1 Task 5 Don't Break the Chain
b.	Combine standard function types using arithmetic operations. For example, build a	Module 1 Task 6 Something to Chew On
	function that models the temperature of a cooling body by adding a constant	Module 1 Task 7 Chew On This
	function to a decaying exponential, and relate these functions to the model.	Module 1 Task 8 What Comes Next? What Comes Later?
		Module 2 Task 2 Shh! Please Be Discreet! (Discrete)
		Module 3 Task 5 Pooling It Together
		Module 3 Task 6 Interpreting Functions
		Module 8 Task 4 Training Day

	Module 1 Task 5 Don't Break the Chain
reading these from a table).	Module 1 Task 4 Scott's Workout
sequences, given a graph, a description of a relationship, or two input-output pairs (include	Module 1 Task 3 Growing, Growing Dots
F.LE.2 Construct linear and exponential functions, including arithmetic and geometric	Module 1 Task 2 Growing Dots
rate per unit interval relative to another.	
c. Recognize situations in which a quantity grows or decays by a constant percent	Module 2 Task 2 Shh! Please Be Discreet! (Discrete)
interval relative to another.	Module 1 Task 8 What Comes Next? What Comes Later?
b. Recognize situations in which one quantity changes at a constant rate per unit	Module 1 Task 7 Chew On This
exponential functions grow by equal factors over equal intervals.	Module 1 Task 6 Something to Chew On
a. Prove that linear functions grow by equal differences over equal intervals;	Module 1 Task 5 Don't Break the Chain
	Module 1 Task 5 Growing, Growing Dots Module 1 Task 4 Scott's Workout
F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.	Module 1 Task 2 Growing Dots Module 1 Task 3 Growing, Growing Dots
	Madula 4, Task 2, Crawing Data
expressions for them. Construct and compare linear, quadratic, and exponential models and solve problems.	
technology. Include recognizing even and odd functions from their graphs and algebraic	
Experiment with cases and illustrate an explanation of the effects on the graph using	Module 8 Task 6 Shifting Functions
k) for specific values of k (both positive and negative); find the value of k given the graphs.	Module 8 Task 5 Training Day Part II
F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + y)$	Module 8 Task 4 Training Day
Build new functions from existing functions.	
	Module 2 Task 4 Getting Down to Business
	Module 1 Task 11 I Know What Do You Know?
	Module 1 Task 8 What Comes Next? What Comes Later?
	Module 1 Task 7 Chew On This
	Module 1 Task 6 Something to Chew On
	Module 1 Task 5 Don't Break the Chain
	Module 1 Task 4 Scott's Workout
formula, use them to model situations, and translate between the two forms.	Module 1 Task 3 Growing, Growing Dots
F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit	Module 1 Task 2 Growing Dots
	Module 8 Task 5 Training Day Part II Module 8 Task 6 Shifting Functions

	Module 1 Task 6 Something to Chew On
	Module 1 Task 7 Chew On This
	Module 1 Task 8 What Comes Next? What Comes Later?
	Module 1 Task 9 What Does It Mean?
	Module 1 Task 10 Geometric Meanies
	Module 1 Task 11 Know What Do You Know?
	Module 2 Task 2 Shh! Please Be Discreet! (Discrete)
	Module 2 Task 4 Getting Down to Business
F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually	Module 2 Task 3 Linear, Exponential or Neither
exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial	Module 2 Task 4 Getting Down to Business
function.	
Interpret expressions for functions in terms of the situation they model.	
F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context.	Module 1 Task 2 Growing Dots
	Module 1 Task 3 Growing, Growing Dots
	Module 1 Task 4 Scott's Workout
	Module 1 Task 5 Don't Break the Chain
	Module 1 Task 6 Something to Chew On
	Module 1 Task 8 What Comes Next? What Comes Later?
	Module 2 Task 3 Linear, Exponential or Neither
	Module 2 Task 4 Getting Down to Business
	Module 2 Task 5 Making My Point
	Module 2 Task 6 Form Follows Function
Geometry	·
Experiment with transformations in the plane.	
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line	Module 6 Task 1 Leaping Lizards!
segment, based on the undefined notions of point, line, distance along a line, and distance	Module 6 Task 2 Is It Right?
around a circular arc.	Module 6 Task 4 Leap Year
G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry	Module 6 Task 1 Leaping Lizards!
software; describe transformations as functions that take points in the plane as inputs and	Module 6 Task 4 Leap Year
give other points as outputs. Compare transformations that preserve distance and angle to	
those that do not (e.g., translation versus horizontal stretch).	
	1

G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the	Module 6 Task 5 Symmetries of Quadrilaterals
rotations and reflections that carry it onto itself.	Module 6 Task 6 Symmetries of Regular Polygons
	Module 6 Task 7 Quadrilaterals-Beyond Definition
G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles,	Module 6 Task 1 Leaping Lizards!
circles, perpendicular lines, parallel lines, and line segments.	Module 6 Task 3 Leap Frog
	Module 6 Task 4 Leap Year
	Module 6 Task 7 Quadrilaterals-Beyond Definition
G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the	Module 6 Task 1 Leaping Lizards!
transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a	Module 6 Task 3 Leap Frog
sequence of transformations that will carry a given figure onto another.	Module 7 Task 3 Can You Get There From Here?
Understand congruence in terms of rigid motions.	
G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the	Module 6 Task 5 Symmetries of Quadrilaterals
effect of a given rigid motion on a given figure; given two figures, use the definition of	Module 6 Task 6 Symmetries of Regular Polygons
congruence in terms of rigid motions to decide if they are congruent.	Module 6 Task 7 Quadrilaterals-Beyond Definition
	Module 7 Task 4 Congruent Triangles
G.CO.7 Use the definition of congruence in terms of rigid motions to show that two	Module 7 Task 4 Congruent Triangles
triangles are congruent if and only if corresponding pairs of sides and corresponding pairs	Module 7 Task 5 Congruent Triangles to the Rescue
of angles are congruent.	
G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the	Module 7 Task 4 Congruent Triangles
definition of congruence in terms of rigid motions.	Module 7 Task 5 Congruent Triangles to the Rescue
Make geometric constructions.	
G.CO.12 Make formal geometric constructions with a variety of tools and methods	Module 7 Task 1 Under Construction
(compass and straightedge, string, reflective devices, paper folding, dynamic geometric	Module 7 Task 2 More Things Under Construction
software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an	Module 7 Task 3 Can You Get There From Here?
angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	Module 7 Task 6 Justifying Constructions
G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a	Module 7 Task 1 Under Construction
circle.	Module 7 Task 2 More Things Under Construction
	Module 7 Task 3 Can You Get There From Here?
	Module 7 Task 6 Justifying Constructions

Use coordinates to prove simple geometric theorems algebraically.	
G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0, 2)$.	Module 8 Task 3 Prove It!
G.GPE.5 Prove the slope criteria for parallel and perpendicular lines; use them to solve	Module 6 Task 2 Is It Right?
geometric problems (e.g., find the equation of a line parallel or perpendicular to a given	Module 6 Task 4 Leap Year
line that passes through a given point).	Module 8 Task 2 Slippery Slopes
G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	Module 8 Task 1 Go the Distance
Statistics	•
Summarize, represent, and interpret data on a single count or measurement variable.	
S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box	Module 9 Task 1 Texting By the Numbers
plots).	Module 9 Task 2 Data Distribution
S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center	Module 9 Task 1 Texting By the Numbers
(median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Module 9 Task 2 Data Distribution
S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets,	Module 9 Task 1 Texting By the Numbers
accounting for possible effects of extreme data points (outliers).	Module 9 Task 2 Data Distribution
Summarize, represent, and interpret data on two categorical and quantitative variables.	
S.ID.5 Summarize categorical data for two categories in two-way frequency tables.	Module 9 Task 3 After School Activity
Interpret relative frequencies in the context of the data (including joint, marginal, and	Module 9 Task 4 Relative Frequency
conditional relative frequencies). Recognize possible associations and trends in the data.	
S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the	Module 9 Task 7 Getting Schooled
variables are related.	Module 9 Task 8 Rocking the Residuals
	Module 9 Task 8 Lies and Statistics
a. Fit a function to the data; use functions fitted to data to solve	
problems in the context of the data. Use given functions or	

 choose a function suggested by the context. Emphasize linear and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for scatter plots that suggest a linear association. 	
Interpret linear models	
S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Module 9 Task 6 Making More \$ Module 9 Task 7 Getting Schooled Module 9 Task 8 Lies and Statistics
S.ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	Module 9 Task 5 Connect the Dots Module 9 Task 6 Making More \$ Module 9 Task 7 Getting Schooled Module 9 Task 8 Lies and Statistics
S.ID.9 Distinguish between correlation and causation.	Module 9 Task 6 Making More Money