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6.1 Go the Distance

A Develop Understanding Task

The performances of the Podunk High School drill team are very popular during half-time at the
school’s football and basketball games. When the Podunk High School drill team choreographs the
dance moves that they will do on the football field, they lay out their positions on a grid like the one

below:

In one of their dances, they plan to make patterns holding long, wide ribbons that will span from

one dancer in the middle to six other dancers. On the grid, their pattern looks like this:

The question the dancers have is how l.ongl to make the ribbons. Gabriela (G) is standing in the
center and some dancers think that the ribbon from Gabriela (G) to Courtney (C) will be shorter
than the one from Gabriela (G) to Brittney (B).

1. How long does each ribbon need to be?
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2. Explain how you found the length of each ribbon.

When they have finished with the ribbons in this position, they are considering using them to form

a new pattern like this:
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3.  Will the ribbons they used in the previous pattern be long enough to go between Britney

(B) and Courtney (C) in the new pattern? Explain your answer.

Gabriela notices that the calculations she is making for the length of the ribbons reminds her of
math class. She says to the group, “Hey, | wonder if there is a process that we could use like what

we have been doing to find the distance between any two points on the grid.” She decides to think

about it like this:
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“I'm going to start with two points and draw the line between them that represents the distance
that I'm looking for. Since these two points could be anywhere, I named them A (x1y1) and B (x2y2).

Hmmmmm....when I figured the length of the ribbons, what did I do next?”

4. Think back on the process you used to find the length of the ribbon and write down your

steps here, in terms of (x1,y1) and (x2,y2).

5. Use the process you came up with in #4 to find the distance between two points located far
enough away from each other that using your formula from #4 is more efficient than

graphing and counting. For example find the distance between (-11, 25) and (23, -16)

6. Use your process to find the perimeter of the hexagon pattern shown in #3.
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6.1 Go the Distance - Teacher Notes

A Develop Understanding Task

Note to Teachers: Calculators facilitate the work for this task.

Purpose: The purpose of this task is to develop the distance formula, based upon students’
understanding of the Pythagorean theorem. In the task, students are asked to calculate distances
between points using triangles, and then to formalize the process to the distance formula. At the

end of the task, students will use the distance formula to find the perimeter of a hexagon.

Core Standards Focus:
G. GPE.4 Use coordinates to prove simple geometric theorems algebraically.

G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles,

e.g., using the distance formula.

Standards for Mathematical Practice:

SMP 1 - Make sense of problems and persevere in solving them.
SMP 7 - Look for and make use of structure.
The Teaching Cycle:

Launch (Whole Class):

Begin the task by ensuring that student understand the problem situation. Project the drawing in
#1 and ask students which ribbon looks longer, GB or GC. Ask how they can test their claims.

Some students may suggest using the Pythagorean Theorem to find the length of GB. Ask what they

would need to use the Pythagorean Theorem. At this point, set students to work on the task.

Explore (Small Group):
During the exploration period, watch for students that are stuck on the first part of the problem.

You may ask them to draw the triangle that will help them to use the Pythagorean Theorem and
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how they might find the length of the legs of the triangle so they can find the hypotenuse. As you
monitor student thinking on #3, watch for students who are noticing how to find the length of the
legs of the triangle when it has been moved away from the origin. Look for students that have
written a good step-by-step procedure for #4. It will probably be difficult for them to use the

symbols appropriately, so watch for words that appropriate describe the procedure.

Discuss (Whole Class):

Start the discussion by having a group show how they found the length of BC in problem #3. Move
next to #4 and have a group that has written a step by step procedure. Try walking through the
group’s procedure with the numbers from problem #3 and see if it gives the appropriate answer.
If necessary, work with the class to modify the procedure so that the list of steps is correct. Once
the steps are outlined in words, go through the steps using points A (x1y1) and B (x2y2) and

formalize the procedures with the symbols. An example:

Steps in words Steps in symbols

Find the length of the horizontal leg of the X2 - X1

triangle

Find the length of the vertical leg of the triangle V2-y1

Use the Pythagorean Theorem to write an (X2 — %)%+ (y,— y1)? =c?

equation

Solve for ¢ (X2 — %)%+ (y,— y1)? =c?

Take the square root of both sides of the \/(xz — )2+ (y,— )% = \/ﬁ

equation

Simplify V@ — x1)2+ (y2 — ¥1)? = c (c being the
desired distance)

Using algebraic notation to model a correct process that is given verbally will result in deriving the
distance formula. After going through this process, apply the formula using the points in #5.

Aligned Ready, Set, Go: Connecting Algebra and Geometry 6.1
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READY, SET, GO! Name Period Date

READY
Topic: Finding the distance between two points

Use the number line to find the distance between the given points. (The notation AB means the
distance between the points A and B.)

1. AE 2. CF 3. GB 4. CA 5. BF 6. EG
A B C D E F G
f o O f f @ f f @ f f f f @ @ f f @ f
-4 -2 0 2 4

7. Describe a way to find the distance between two points on a number line without counting the

spaces.
A
8. ~ a. Find AB.
\\
N b. Find BC.
¢ ANY

B C

c. Find AC.

9. Why is it easier to find the distance between point A and point B and point B and point C than it is
to find the distance between point A and point C?

10. Explain how to find the distance between point A and point C.

Mathematics Vision Project
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SET

Topic: Slope triangles and the distance formula
Triangle ABC is a slope triangle for the line segment AB where BC is B @eetlenananannen B
the rise and AC is the run. Notice that the length of segment BC has a
corresponding length on the y-axis and the length of AC has a
corresponding length on the x-axis. The slope formula is written as
m = Y2=Y1

—=—=where m is the slope.
X2—X1

11. a. What does the value (y, — y;) tell you?

b. What does the value (x, — x;) tell you?

In the previous unit you found the length of a slanted line segment by drawing the slope triangle and
then using the Pythagorean theorem on the two sides of the triangle. In this exercise, try to develop a
more efficient method of calculating the length of a line segment by using the meaning of (y, — y;) and
(x5 — x1) combined with the Pythagorean theorem.

12. Find AB. 13. Find AB. B s, 16)

i 6, 4)

2,2)

(2,1) e

14. Find AB. 15. Find AB.

8 & % Ve
(-3,1N ( P,Q).\

\ \B

\B (J,K)

(3.5,-4.5)
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GO

Topic: Rectangular coordinates

Use the given information to fill in the missing coordinates. Then find the length of the indicated line

segment.
16.a) Find HB. P e .o A
: .
| |
| |
| |
| |
| |
| |
: :
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b) Find BD. | !
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17.a) Find DB ¢
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| |
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| . o

b) Find CF i”( , ) .(,(0,0) +1\(4, )’
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| |
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E( . ) F( ,-3) LA( , )
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]
1 o
6.2 Slippery Slopes 2
g
A Solidify Understanding Task %
QO
O
While working on “Is It Right?” in a previous module you looked at several examples that lead to the
conclusion that the slopes of perpendicular lines are negative reciprocals. Your work here is to
formalize this work into a proof. Let’s start by thinking about two perpendicular lines that intersect at
the origin, like these:
1. Start by drawing a right triangle with the segment OA as the hypotenuse. These are often
called slope triangles. Based on the slope triangle that you have drawn, what is the slope of
04?
2. Now, rotate the slope triangle 90° about the origin. What are the coordinates of the image of
point A?
3. Using this new point, A’, draw a slope triangle with hypotenuse OA’. Based on the slope
triangle, what is the slope of the line 0A"?
Mathematics Vision Project “ .
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4. What is the relationship between these two slopes? How do you know?

5. Isthe relationship changed if the two lines are translated so that the intersection is at (-5, 7)?

How do you know?

To prove a theorem, we need to demonstrate that the property holds for any pair of perpendicular
lines, not just a few specific examples. It is often done by drawing a very similar picture to the
examples we have tried, but using variables instead of numbers. Using variables represents the idea
that it doesn’t matter which numbers we use, the relationship stays the same. Let’s try that strategy

with the theorem about perpendicular lines having slopes that are negative reciprocals.

e Linesand m are constructed to be perpendicular.

e Start by labeling a point P on the line L

e Label the coordinates of P.

e Draw the slope triangle from point P.

e Label the lengths of the sides of the slope triangle using variables like a and b for the

run and the rise.

Mathematics Vision Project “ )
Licensed under the Creative Commons Attribution CC BY 4.0 ma th ematics
mathematicsvisionproject.org vision P FOJ ect

8



GEOMETRY // MODULE 6
CONNECTING ALGEBRA & GEOMETRY - 6.2

6. What is the slope of line I?

Rotate point P 90° about the origin, label it P’ and mark it on line m. What are the coordinates

of P’?

7. Draw the slope triangle from point P’. What are the lengths of the sides of the slope triangle?

How do you know?

8. Whatis the slope of line m?

9. What is the relationship between the slopes of line / and line m? How do you know?

10. Is the relationship between the slopes changed if the intersection between line / and line m is

translated to another location? How do you know?

11. Is the relationship between the slopes changed if lines / and m are rotated?

12. How do these steps demonstrate that the slopes of perpendicular lines are negative reciprocals

for any pair of perpendicular lines?

Mathematics Vision Project “
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Think now about parallel lines like the ones below.

13. Draw the slope triangle from point A to the origin. What is the slope of 0A?

14. What transformation(s) maps the slope triangle with hypotenuse 04 onto the other line m?

15. What must be true about the slope of line [? Why?

Mathematics Vision Project “ )
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Now you're going to try to use this example to develop a proof, like you did with the perpendicular

lines. Here are two lines that have been constructed to be parallel.

N\

16. Show how you know that these two parallel lines have the same slope and explain why this proves

that all parallel lines have the same slope.
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6.2 Slippery Slopes - Teacher Notes
A Solidify Understanding Task

Purpose: The purpose of this task is to prove that parallel lines have equal slopes and that the slopes
of perpendicular lines are negative reciprocals. Students have used these theorems previously. The
proofs use the ideas of slope triangles, rotations, and translations. Both proofs are preceded by a
specific case that demonstrates the idea before students are asked to follow the logic using variables

and thinking more generally.

Core Standards Focus:
G. GPE Use coordinates to prove simple geometric theorems algebraically.

G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric
problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a

given point).
Related Standards: G.CO.4, G.CO.5
Standards for Mathematical Practice:

SMP 3 - Construct viable arguments and critique the reasoning of others.
SMP 6 - Attend to precision.

The Teaching Cycle:

Launch (Whole Class):

If students haven’t been using the term “slope triangle”, start the discussion with a brief

demonstration of slope triangles and how they show the slope of the line. Students should be familiar
with performing a 90 degree rotation from the previous module, so begin the task by having students
work individually on questions 1, 2, 3, and 4. When most students have drawn a conclusion for #4,
have a discussion of how they know the two lines are perpendicular. Since the purpose is to
demonstrate that perpendicular lines have slopes that are negative reciprocals, emphasize that the
reason that we know that the lines are perpendicular is that they were constructed based upon a 90
degree rotation.

Mathematics Vision Project “ )
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Explore (Small Group):

The proof that the slopes of perpendicular lines are negative reciprocals follows the same pattern as
the example given in the previous problem. Monitor students as they work, allowing them to select a
point, label the coordinates and then the sides of the slope triangles. Refer students back to the
previous problem, asking them to generalize the steps symbolically if they are stuck. When students
are finished with questions 6-12, discuss the proof as a whole group and then have students complete

the task.

Discuss (Whole Class):
The setup for the proofis below:

y fa, b)

-b,a)

The slope of line l is Z and the slope of line m is _ib or - %. The product of the two slopes is -1, therefore

they are negative reciprocals. If the lines are translated so that the intersection is not at the origin, the
slope triangles will remain the same. Discuss with the class how questions 6-12 help us to consider all
the possible cases, which is necessary in a proof.

After students have finished the task, go through the brief proof that the slopes of parallel lines are
equal.

Aligned Ready, Set, Go: Connecting Algebra and Geometry 6.2
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READY, SET, GO! Name Period Date

READY

Topic: Using translations to graph lines

The equation of the line in the graph is y = x.

1. a) On the same grid graph a parallel line that is 3 units above it.

b) Write the equation for the new line in slope-intercept form.

c) Write the y-intercept of the new line as an ordered pair.

d) Write the x-intercept of the new line as an ordered pair.
e) Write the equation of the new line in point-slope form using the y-intercept.
f) Write the equation of the new line in point-slope form using the x-intercept.

g) Explain in what way the equations are the same and in what way they are different.

The graph at the right shows the line y = —2x.
2. a) On the same grid, graph a parallel line that is 4 units below it.

b) Write the equation of the new line in slope-intercept form.

c) Write the y-intercept of the new line as an ordered pair.

d) Write the x-intercept of the new line as an ordered pair.

e) Write the equation of the new line in point-slope form using

the y-intercept.

f) Write the equation of the new line in point-slope form using the x-intercept.

g) Explain in what way the equations are the same and in what way they are different.

Mathematics Vision Project
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The graph at the right shows the line y = %x.

3. a) On the same grid, graph a parallel line that is 2 units below it.

b) Write the equation of the new line in slope-intercept form. —

c) Write the y-intercept of the new line as an ordered pair.

d) Write the x-intercept of the new line as an ordered pair.
e) Write the equation of the new line in point-slope form using the y-intercept.
f) Write the equation of the new line in point-slope form using the x-intercept.

g) Explain in what way the equations are the same and in what way they are different.

SET

(1,6)
Topic: Verifying and proving geometric relationships 6 A

D 4,5
The quadrilateral at the right is called a kite.

Complete the mathematical statements about the kite using .
the given symbols. Prove each statement algebraically.
(A symbol may be used more than once.) 3

= 1| < > =
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7. AABC AADC

8. BE ED
9. AE ED
10. AC BD

GO

Topic: Writing equations of lines
Use the given information to write the equation of the line in standard form. (Ax + By = C)

11. Slope: —% point (12,5) 12. P(11,-3), Q(6,2)

13. x — intercept: — 2; y — intercept: — 3 14. All x values are (—7). Y is any number.

15. Slope: %; x — intercept:5 16. E (-10,17), 6 (13,17)
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Wpx704/d10p21//:5d1y
AN-VSYd A9 DD

A Practice Understanding Task

6.3 Prove It!

In this task you need to use all the things you know about quadrilaterals, distance, and slope to

prove that the shapes are parallelograms, rectangles, rhombi, or squares. Be systematic and be sure

4

Lol dedeobaledabokb dadabadada

delobdodobalada

4

-—da

T
L4 J

-

that you give all the evidence necessary to verify your claim.

L

delobdedobaleda

Lol

mdobdoda

a. Is ABCD a parallelogram? Explain how you know.

b. Is EFGH a parallelogram? Explain how you know.

“vl-mathematics
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“vl-mathematics

>+t mE A oo

a. Is ABCD a rectangle? Explain how you know
b. Is EFGH a rectangle? Explain how you know.
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a. Is ABCD a square? Explain how you know.
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6.3 Prove It! - Teacher Notes
A Practice Understanding Task

Purpose: The purpose of this task is to solidify student understanding of quadrilaterals and to
connect their understanding of geometry and algebra. In the task they will use slopes and distance
to show that particular quadrilaterals are parallelograms, rectangles, rhombi or squares. This task
will also strengthen student understanding of justification and proof, and the need to put forth a

complete argument based upon sound mathematical reasoning.

Core Standards Focus:
G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or

disprove that a figure defined by four given points in the coordinate plane is a rectangle.
Related Standards: G.GPE.5, G.GPE.7

Standards for Mathematical Practice:
SMP 3 - Construct viable arguments and critique the reasoning of others

SMP 6 - Attend to precision

The Teaching Cycle:

Launch (Whole Class):

Launch the task with a discussion of what students know about the properties of quadrilaterals, for
instance that a rhombus has two pairs of parallel sides (making it a parallelogram), congruent sides,
and perpendicular diagonals. Discuss what you would need to show to prove a claim that a figure is
a particular quadrilateral. For instance, it is not enough to show that a shape is a rhombus by
showing that the two pairs of sides are parallel, but it would be enough to show that the diagonals
are perpendicular. Why?

Explore (Small Group):

Monitor students as they work. It may be helpful to recognize that each set of problems is set up so

there is a simple case and a more complicated case. The simple case is designed to help students

Mathematics Vision Project N )
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getideas for how to prove the more complicated case. Keep track of the various approaches that
students use to verify their claims and press them to organize their work so that it communicates to
an outside observer. Students should be showing sides or diagonals are parallel or perpendicular
using the slope properties, and the distance formula to show that sides or diagonals are congruent.
You may also see students try to show one figure to be a particular quadrilateral and then use
transformations to show that the second figure is the same type. Select one group of students that
have articulated a clear argument for each type of quadrilateral. Be sure to also select a variety of

approaches so that students have opportunity to make connections and become more fluent.

Discuss (Whole Class):

The discussion should proceed in the same order as the task, with different groups demonstrating
their strategies for one parallelogram, one rectangle, one rhombus, and one square. Select the
shape that does not have sides that are on a grid line, so that students are demonstrating the more

challenging cases. One recommended sequence for the discussion would be:

1b. Quadrilateral EFGH is not a parallelogram demonstrated by showing that one pair of opposite

sides are not parallel using slopes.

2b. Rectangle EFGH demonstrated by using the distance formula to show that the diagonals are

congruent.

3a. Showing quadrilateral ABCD is a rhombus because the diagonals are perpendicular and the

sides are congruent (or that the sides are congruent and the opposite sides are parallel).

3b. Showing that quadrilateral EFGH is not a rhombus because the sides are not congruent. Ask if

the figure is a parallelogram? How do we know?

4a. Showing that quadrilateral ABCD is a square because adjacent sides are perpendicular and
sides are congruent. Ask if it sufficient to show that the sides are congruent? How do we know that
the opposite sides are parallel?

Aligned Ready, Set, Go: Connecting Algebra and Geometry 6.3
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READY, SET, GO! Name Period Date

READY

Topic: Interpreting tables of value as ordered pairs.

Find the value of f(x) for the given domain. Write x and f(x) as an ordered pair.

1. f(x) =3x -2 2. f(x) = x? 3. f(x) =5*%
x| fO) | (xf@®) x | @ | (ofe) x | f&) | (efe)
-2 -2 -2
-1 -1 -1
0 0 0
1 1 1
2 2 2
SET 5 E
Topic: Identifying specific quadrilaterals
| | | AT TN
4. a) Is the figure at the right a rectangle? Justify your answer. e N
pd +IN\
o N
N T
b) Is the figure at the right a rhombus? Justify your answer. \\ //
PN A
7
/ 3
c) Is the figure at the right a square? Justify your answer.
GO
Topic: Calculating perimeters of geometric shapes
Mathematics Vision Project -
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6.3

Find the perimeter of each figure below. Round answers to the nearest hundredth.

5.
TN
///
i \
1\
| all
P
7. )
| A |
AR R
[ \
¢l ]
>
ﬁ-T-(
9.

6.

10.
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CONNECTING ALGEBRA & GEOMETRY - 6.4 N:
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R
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° ° ° > ;/'
6.4 Circling Triangles (Or & g
!
Triangulating Circles) =
A Develop Understanding Task
Using the corner of a piece of colored paper and a ruler, cut a right triangle with a 6” hypotenuse,
like so:
Use this triangle as a pattern to cut three more just like it, so that you have a total of four congruent
triangles.
1. Choose one of the legs of the first triangle and label it x and label the other leg y. What is the
relationship between the three sides of the triangle?
2. When you are told to do so, take your triangles up to the board and place each of them on the
coordinate axis like this: A
Mark the point at the end of each hypotenuse with a pin. < >
A\ 4
Mathematics Vision Project “v- )
Licensed under the Creative Commons Attribution CC BY 4.0 B ma th ematics
mathematicsvisionproject.org vision @) I'Oj ect

21



GEOMETRY // MODULE 6
CONNECTING ALGEBRA & GEOMETRY - 6.4

3. What shape is formed by the pins after the class has posted all of their triangles? Why
would this construction create this shape?

4. What are the coordinates of the pin that you placed in:
a. the first quadrant?
b. the second quadrant?
c. the third quadrant?
d. the fourth quadrant?

5. Now that the triangles have been placed on the coordinate plane, some of your triangles
have sides that are of length -x or -y. Is the relationship x2 + y? = 62 still true for these
triangles? Why or why not?

6. What would be the equation of the graph that is the set on all points that are 6” away from
the origin?

7. Isthe point (0, -6) on the graph? How about the point (3, 5.193)? How can you tell?

8. Ifthe graph is translated 3 units to the right and 2 units up, what would be the equation of

the new graph? Explain how you found the equation.

Mathematics Vision Project “ )
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6.4 Circling Triangles (Or Triangulating Circles) -
Teacher Notes

A Develop Understanding Task

Purpose: This purpose of this task is for students to connect their geometric understanding of
circles as the set of all point equidistant from a center to the equation of a circle. In the task,
students construct a circle using right triangles with a radius of 6 inches. This construction is
intended to focus students on the Pythagorean Theorem and to use it to generate the equation of a
circle centered at the origin. After constructing a circle at the origin, students are asked to use their
knowledge of translations to consider how the equation would change if the center of the circle is

translated.

Core Standards Focus:

G-GPE Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section

G-GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem;

complete the square to find the center and radius of a circle given by an equation.

Standards for Mathematical Practice:
SMP 1 - Make sense of problems and persevere in solving them

SMP 7 - Look for and make use of structure
The Teaching Cycle:

Launch (Whole Class):
Be prepared for the class activity by having at least two sheets of colored paper (heavy paper is
better), rulers and scissors for students to use. On a board in the classroom, create the coordinate

axes with strings or tape. Prepare a way for students to mark the endpoint of their triangles with a

Mathematics Vision Project “ )
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tack or some other visible mark so that the circle that will be constructed is visible. Depending on
the size of your class, you may choose to have several axes set up and divide students into groups.
Ask students to follow the instructions on the first page and post their triangles. Encourage some
students to select the longest leg of the triangle to be x and others to select the shortest leg to be x
so that there are as many different points on the circle formed as possible. Watch as students post
their triangles to see that they get all four of them into the proper positions. An example of what

the board will look like when the triangles are posted is:

Tell students to work on problem #3 as other students finish posting their triangles. When all
students are finished, ask students why the shape formed is a circle. They should be able to relate
the idea that since each triangle had a hypotenuse of 6”, they formed a circle that has a radius of 6”.
Use a 6” string to demonstrate how the radius sweeps around the circle, touching the endpoint of

each hypotenuse.

Explore (Small Group):
Ask students to work on the remaining questions. Monitor student work to support their thinking
about the Pythagorean Theorem using x and y as the lengths of the legs of any of the right triangles

used to form the circle. Question #5 may bring about confusion about the difference between (-x)2

Mathematics Vision Project Nv- )
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and -x2. Remind students that in this case, x is a positive number, so -x is a negative number, and

the square of a negative number is positive.

Discuss (Whole Class):

Begin the discussion with #6. Ask students for their equation and how their equation represents all
the points on the circle. Press for students to explain how the equation works for points that lie in
quadrants II, IlI, and IV.

Turn the discussion to #7. Ask how they decided if the points were on the circle. Some students
may have tried measuring or estimating, so be sure that the use of the equation is demonstrated.
After discussing the point (3, 5.193), ask students what could be said about (3, -5.193) or (-3, -

5.193) to highlight the symmetries and how they come up in the equation.

Finally, discuss the last question. Students should have various explanations for the change in the
equation. Some may use the patterns they have observed in shifting functions, although it should
be noted that this graph is not a function. Other students may be able to articulate the idea that

x — 3 represents the length of the horizontal side of the triangle that was originally length x, now

that it has been moved three units to the right.

Aligned Ready, Set, Go: Connecting Algebra and Geometry 6.4
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READY, SET, GO! Name Period Date

READY

Topic: Factoring special products

Factor the following as the difference of 2 squares or as a perfect square trinomial. Do not factor
if they are neither.

b? — 49 b?—-2b+1 b? + 10b + 25

x? —y? x? —2xy + y? 25x2 — 49y?

36x2 + 60xy + 25)2 810 — 1642 144x? — 312xy + 169y?
SET

Topic: Writing the equations of circles

Write the equation of each circle centered at the origin.
10. 11. 12.

o

Need help? Visit www.rsgsupport.org
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13. 14. 15.

-2

-2

GO

Topic: Verifying Pythagorean triples

Identify which sets of numbers could be the sides of a right triangle. Show your work.

16. {9,12,15) 17. {9.10,¥19} 18. {1.43,2}
19. {2,4,6)} 20. {/3,4,5} 21. {10,24,26}
2y V2473 b3 12V2.543.9} 2a. {4ab’\N10,6ab* 14ab’}

Need help? Visit www.rsgsupport.org
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Malik’s family has decided to put in a new sprinkling system in their yard. Malik has
volunteered to lay the system out. Sprinklers are available at the hardware store in the

following sizes:

Full circle, maximum 15’ radius

Half circle, maximum 15’ radius

Quarter circle, maximum 15’ radius

All of the sprinklers can be adjusted so that they spray a smaller radius. Malik needs to be
sure that the entire yard gets watered, which he knows will require that some of the circular
water patterns will overlap. He gets out a piece of graph paper and begins with a scale
diagram of the yard. In this diagram, the length of the side of each square represents 5 feet.
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1. As he begins to think about locating sprinklers on the lawn, his parents tell him to try
to cover the whole lawn with the fewest number of sprinklers possible so that they can
save some money. The equation of the first circle that Malik draws to represent the
area watered by the sprinkler is:

(x + 25)% + (y + 20)% = 225

Draw this circle on the diagram using a compass.

2. Lay out a possible configuration for the sprinkling system that includes the first
sprinkler pattern that you drew in #1.

3. Find the equation of each of the full circles that you have drawn.

Malik wrote the equation of one of the circles and just because he likes messing with the
algebra, he did this:

Original equation: (x—3)2+ (y+2)? =225
x2 —6x+9+ y?+4y+4 =225

x2+ y2—6x+4y—212=0

Malik thought, “That’s pretty cool. It’s like a different form of the equation. I guess that there
could be different forms of the equation of a circle like there are different forms of the
equation of a parabola or the equation of a line.” He showed his equation to his sister, Sapana,
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and she thought he was nuts. Sapana, said, “That’s a crazy equation. I can’t even tell where
the center is or the length of the radius anymore.” Malik said, “Now it’s like a puzzle for you.
I'll give you an equation in the new form. I'll bet you can’t figure out where the center is.”

Sapana said, “Of course, I can. I'll just do the same thing you did, but work backwards.”

4. Malik gave Sapana this equation of a circle:
x2 + y2—4x+10y+20=0

Help Sapana find the center and the length of the radius of the circle.

5. Sapana said, “Ok. I made one for you. What'’s the center and length of the radius for
this circle?”

x2+ y2+6x—14y—42=0

6. Sapana said, “I still don’t know why this form of the equation might be useful. When
we had different forms for other equations like lines and parabolas, each of the various
forms highlighted different features of the relationship.” Why might this form of the
equation of a circle be useful?

x2+ y2+Ax+ By +C =0

Mathematics Vision Project “ .
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6.5 Getting Centered - Teacher Notes
A Solidify Understanding Task

Purpose: The purpose of this task is to solidify understanding of the equation of the circle. The

task begins with sketching circles and writing their equations. It proceeds with the idea of squaring

the (x - h)? and (y - k)? expressions to obtain a new form of an equation. Students are then

challenged to reverse the process to find the center of the circle.

Core Standards Focus:

G-GPE Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section

G-GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem;

complete the square to find the center and radius of a circle given by an equation.

Standards for Mathematical Practice:
SMP 2 - Reason abstractly and quantitatively

SMP 8 - Look for express regularity in repeated reasoning

The Teaching Cycle:

Launch (Whole Class):
Begin the task by helping students to understand the context of developing a diagram for a

sprinkling system. The task begins with students drawing circles to cover the yard and writing
equations for the circles that they have sketched. Allow students some time to work to make their
diagrams and write their equations. However, don’t spend too much time trying to completely
cover the lawn. The point is to draw four or more circles and to write their equations. As students
are working, be sure that they are accounting for the scale as they name the center of their circles.
Ask several students to share their equations. After each student shares, ask the class to identify

the center and radius of the equation. After several students have shared, ask one student to take

the last equation shared and square the (x - h)? and (y - k)Zexpressions and simplify the

Mathematics Vision Project “ .
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remaining equation. Tell students that this is what Malik did and now their job is to take the

equation back to the form in which they can easily read the center and radius.

Explore (Small Group):
Since students have previously completed the square for parabolas, some students will think to
apply the same process here. Monitor their work, watching for groups that have different answers

for the same equation (hopefully, one of them is correct).

Discuss (Whole Class):

Begin the discussion by posting two different equations that answer question #4. Ask students how
they can decide which equation is correct. They may suggest working backwards to the original
equation, or possibly checking a point. Decide which equation is correct and ask that group to
describe the process they used to get the answer. Ask another group that has a correct version of
#5 to show how they obtained their answer. You may also wish to discuss #6. Wrap up the lesson
up by working with the class to create a set of steps that they can follow to get the equation back to
center/radius form.

Aligned Ready, Set, Go: Connecting Algebra and Geometry 6.5
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READY, SET, GO! Name Period Date

READY

Topic: Making perfect square trinomials

Fill in the number that completes the square. Then write the trinomial in factored form.

1. x*+6x+ 2. x*—14x+

3. x*=50x+ 4, x*=28x+

On the next set, leave the number that completes the square as a fraction. Then write the
trinomial in factored form.

5. x—1lx+ 6. X+ 7Tx+ 7. x*+15x+
2 2 2 1 2 3
8. X"+—x+ 9. X" ——Xx+ 10. x*——x+
3 5 4
SET

Topic: Writing equations of circles with center (h, k) and radius r.

Write the equation of each circle.

6

11. 12.

-1 o 1 2 3 4

Need help? Visit www.rsgsupport.org
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6.5

Write the equation of the circle with the given center and radius. Then write it in expanded

form.

14. Center: (5, 2) Radius: 13 15. Center: (-6,-10) Radius: 9
16. Center: (0,8) Radius: 15 17. Center: (19,-13) Radius: 1
18. Center: (-1, 2) Radius: 10 19. Center: (-3,-4) Radius: 8
Go

Topic: Verifying if a point is a solution

Identify which point is a solution to the given equation. Show your work.

20. y=%x—2 a. (-15,-14) b. (10, 10)
21. y=3| a. (-4,-12) b. (—V5,3V5)
22. y=x"+8 a. (vV7,15) b. (vV7,-1)
23. y=—4x>+120 a. (5V3,-180) b. (5V3,40)
24. X’ +y*=9 a. (8,-1) b. (-2,v5)
25. 4x’ -y’ =16 a. (—3,v10) b. (-2v2,4)
Need help? Visit www.rsgsupport.org
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Once Malik and Sapana started challenging each other with circle equations, they got a little
more creative with their ideas. See if you can work out the challenges that they gave each other to
solve. Be sure to justify all of your answers.
1. Malik’s challenge:
What is the equation of the circle with center (-13,-16) and containing the point (-10,-16) on
the circle?
2. Sapana’s challenge:
The points (0, 5) and (0,-5) are the endpoints of the diameter of a circle. The point (3, y) is
on the circle. What is a value for y?
3. Malik’s challenge:
Find the equation of a circle with center in the first quadrant and is tangent to the lines
x=8, y=3,and x = 14.
Mathematics Vision Project “v- _
B mathematics
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4. Sapana’s challenge:
The points (4,-1) and (-6,7) are the endpoints of the diameter of a circle. What is the

equation of the circle?

5. Malik’s challenge:
Is the point (5,1) inside, outside, or on the circle x? — 6x + y? + 8y = 24? How do you

know?

6. Sapana’s challenge:
The circle defined by (x — 1)? + (y + 4)? = 16 is translated 5 units to the left and 2

units down. Write the equation of the resulting circle.

Mathematics Vision Project “ v - .
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7. Malik’s challenge:
There are two circles, the first with center (3,3) and radius ry, and the second with center
(3, 1) and radius r».
a. Find values r; and r; of so that the first circle is completely enclosed by the second

circle.

b. Find one value of r1 and one value of r; so that the two circles intersect at two points.

c. Find one value of r1 and one value of 2 so that the two circles intersect at exactly one

point.
Mathematics Vision Project “ )
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6.6 Circle Challenges - Teacher Notes
A Practice Understanding Task

Purpose:

The purpose of this task is for students to practice using the equation of the circle in different ways.
In each case, they must draw inferences from the information given and use the information to find
the equation of the circle or to justify conclusions about the circle. They will use the distance

formula to find the measure of the radius and the midpoint formula to find the center of a circle.

Core Standards Focus:
G-GPE Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section

G-GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem;

complete the square to find the center and radius of a circle given by an equation.

Standards for Mathematical Practice:

SMP 1 - Make sense of problems and persevere in solving them

SMP 6 - Attend to precision
The Teaching Cycle:
Launch (Whole Class):
Begin the task by telling students that they will be solving the circle challenges by using the
information given, ideas that they have learned in the past (like the distance and midpoint
formulas), and their logic to write equations and justify conclusions about circles. It will probably
be useful to have graph paper available to sketch the circles based on the information given.
Explore (Small Group):
Monitor students as they work, focusing on how they are making sense of the problems and using
the information. Encourage students to draw the situation and visualize the circle to help when

they are stuck. Insist upon justification, asking, “How do you know?”

Mathematics Vision Project “ )
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Discuss (Whole Class):
Select problems that were challenging for the class or highlighted important ideas or useful
strategies. Problem #4 is recommended for this purpose, but it is also important to select the

problems that have generated interest in the class.

Aligned Ready, Set, Go: Connecting Algebra & Geometry 6.6
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READY, SET, GO! Name Period Date
READY

Topic: Finding the distance between two points

Simplify. Use the distance formula d = \/(x2 - X, )2 + (y2 -y )2 to find the distance between the

given points. Leave your answer in simplest radical form.

1. A(18,-12) B(10,4) 2. G(-11,-9) H(-3,7) 3. J(14,-20) K(5,5)
4 M(1,3) P(-2,7) 5. 0(8,2) R(3.7)

6. S(-11.2v2) T(-5.-4472) 7. W(-12.-242) Z(-7.-3V2)

SET

Topic: Writing equations of circles

Use the information provided to write the equation of the circle in standard form,
(x—h)?+ (y—h)?=1?

8. Center (—16,—5) and the circumference is 227

9. Center (13,—27) and the area is 1961

10. Diameter measures 15 units and the center is at the intersection of y=x+ 7 andy = 2x - 5

11. Liesin quadrant2 Tangentto x=—12 and x=-4

Need help? Visit www.rsgsupport.org
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12. Center (-14,9) Pointon circle (1, 11)

13. Center lies on the y axis Tangenttoy=-2andy=-17

14. Three points on the circle are (—8,5),(3,—6),(14,5)

6.6

15. I know three points on the circle are (-7,6), (9,6), and (-4,13). I think that the equation of the circle

is (x - 1)2 + (y - 6)2 =64 . Is this the correct equation for the circle? Justify your answer.

GO

Topic: Finding the value of B in a quadratic in the form of Ax® + Bx+C in order to create a perfect

square trinomial.

Find the value of B that will make a perfect square trinomial. Then write the trinomial in

factored form.

16. x>+ x+36 17. x*+ x+100 18. x*+ x+225
19. 9x* + x+225 20. 16x° + x+169 21. x*+ x+5
) 25 ) 9 ) 49

22. x4+ X+— 23. x"+ xX+— 24. x"+ xX+—
4 4 4

Need help? Visit www.rsgsupport.org
Mathematics Vision Project
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6.7 Directing Our Focus

A Develop Understanding Task

CC BY Tim Waclawski
https:/flic.kr/p/8FFLem

On a board in your classroom, your teacher has set up a point and a line like this:

Focus (point A)
o

<>

directrix (line [)

We're going to call the line a directrix and the point a focus. They’'ve been labeled on the drawing.

Similar to the circles task, the class is going to construct a geometric figure using the focus (point A)

and directrix (line [).

1. Cuttwo pieces of string with the same length.

2. Mark the midpoint of each piece of string with a marker.

Mathematics Vision Project “ v | .
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3. Position the string on the board so that the midpoint is equidistant from the focus (point A)
and the directrix (line l), which means that it must be perpendicular to the directrix. While
holding the string in this position, put a pin through the midpoint. Depending on the size of

your string, it will look something like this:

<>

4. Using your second string, use the same procedure to post a pin on the other side of the

focus.

5. Asyour classmates post their strings, what geometric figure do you predict will be made by

the tacks (the collection of all points like (x, y) show in the figure above)? Why?

6. Where is the vertex of the figure located? How do you know?

7. Where is the line of symmetry located? How do you know?

Mathematics Vision Project u )
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8. Consider the following construction with focus point A and the x-axis as the directrix. Use a

ruler to complete the construction of the parabola in the same way that the class

constructed the parabola with string.

x,y)

9. You have just constructed a parabola based upon the definition: A parabola is the set of all
points (x, y) equidistant from a line / (the directrix) and a point not on the line (the focus).

Use this definition to write the equation of the parabola above, using the point (x, y) to

represent any point on the parabola.

10. How would the parabola change if the focus was moved up, away from the directrix?
11. How would the parabola change if the focus were to be moved down, toward the directrix?

12. How would the parabola change if the focus were to be moved down, below the directrix?

Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org
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6.7 Directing Our Focus - Teacher Notes
A Develop Understanding Task

Purpose:

The purpose of this task is to develop the definition of a parabola as the set of all points equidistant
from a given point (the focus) and a line (the directrix). Only those parabolas with horizontal
directrices are considered in this task. Students develop an equation for a parabola based on the
definition, using the distance formula. Students are also asked to consider the relationship between

the focus and directrix and how the parabola changes as they are moved in relation to each other.

Core Standards Focus:

G.GPE Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section
G.GPE.2. Derive the equation of a parabola given a focus and directrix.

Note: Connect the equations of circles and parabolas to prior work with quadratic equations. The
directrix should be parallel to a coordinate axis.

Standards for Mathematical Practice:
SMP 7 - Look for and make use of structure

SMP 8 - Look for express regularity in repeated reasoning

The Teaching Cycle:

Launch (Whole Class):

Be prepared for the class activity by having scissors, markers, rulers, and string for students to use.
Have a large corkboard with focus and directrix set up for students to use, as pictured in the task.
Lead the class in following the directions for cutting and marking the strings and then posting them

on the board. Before anyone posts a string, ask students what shape they think will be made and

Mathematics Vision Project “ )
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why. Watch as students post their strings to be sure that they are perpendicular to the directrix
and pulled tight both directions so that they look like the illustration.

After students have identified that the figure formed is a parabola, have them work individually on
completing the diagram in #8. When completed, ask how they find the vertex point on a parabola?
Be sure that the discussion includes the fact that the vertex will be the point on the line of
symmetry that is the midpoint between the focus and the directrix. How is the vertex like other
points on the parabola? (It is equidistant from the focus and the directrix.) How is it different? (It’s
the only point of the parabola on the line of symmetry.) Direct the discussion to the line of
symmetry. Where is it on the parabola they just made? How could it be found on any parabola,

given the focus and directrix?

After their work on #8, explain the geometric definition of a parabola given in #9. Then have

students work together to use the definition to write the equation of the parabola.

Explore (Small Group):

Monitor students as they work to be sure that they are using the point marked (x, y) to represent
any point on the parabola, rather than naming it (4,5). If they have written the equation using (4,5)
then ask them how they would change their initial equation to call the point (x, y) instead. After
they have written their equation they may want to test it with the point (4, 5) since they know it is
on the parabola. If students need help getting started, help them to focus on the distance between
the (x, y) and the focus (0,2) and (x, y) and the directrix, y = 0. Ask how they could represent those

distances algebraically.

Be sure that students have time to share their ideas about problems 10 -12 so that the class

discussion of the relationship of the focus and the directrix is robust.

Discuss (Whole Class):
When students have finished their work on the equation, ask a group to present and explain their

work. A possible version is below:

Mathematics Vision Project “ )
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Distance from (x, y) to focus (0, 2) = distance from (x, y) to x-axis

Vx =0+ (y - 2)? = y

(x—0)2+ (y — 2)* = y? Squaring both sides
x? +y%—4y +4 = y2  Simplifying
x2—4y+4 = 0 Simplifying

x* + 4 = 4y Solving for y

x? )

S t1 = y Solving for y

Ask students how this equation matches what they already know about the parabola they have
drawn. Where is the vertex in the equation? How could they use the equation to predict how wide

or narrow the parabola will be?
Turn the discussion to questions 10-12. Ask various students to explain their answers. Use the
parabola applet to test their conjectures about the effect of moving the focus in relation to the

directrix.

Aligned Ready, Set, Go: Connecting Algebra & Geometry 6.7
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READY, SET, GO! Name Period Date

READY

Topic: Graphing Quadratics

Graph each set of functions on the same coordinate axes. Describe in what way the graphs are
the same and in what way they are different.

1

1. y:x2,y:2x2,y=4x2 2. y:Z)cz,y=—xz,y=—4x2
_ 1, _ .2 _ 1, A2 2 2 2 2
3. yEEyEx —2,y—2x —2,y=4x"-2 4 y=x",y=—x",y=x+2,y=—x"+2
Need help? Visit www.rsgsupport.org
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SET

Topic: Sketching a parabola using the conic definition.

Use the conic definition of a parabola to sketch a parabola defined by the given focus F and the
equation of the directrix.

Begin by graphing the focus, the directrix, and point P;. Use the distance formula to find FP; and find the
vertical distance between P; and the directrix by identifying point H on the directrix and counting the
distance. Locate the point P2, (the point on the parabola that is a reflection of P; across the axis of
symmetry.) Locate the vertex V. Since the vertex is a point on the parabola, it must lie equidistant between
the focus and the directrix. Sketch the parabola. Hint: the parabola always “hugs” the focus.

L ]

Example: F(4,3), P:1(8,6),y=1 .
L]
: : P2
P, = \[(4-8) +(3-6) =/16+9 =25 =5
P:H =5

P> is located at (0, 6)
Vis located at (4, 2)

5 10
5. F(1,-1), P:(3,-1) y=-3 6. F(-53),P:1(-1,3) y=7
7. F(2,1),P:1(-2,1) y=-3 8. F(1,-1), P1(-9,-1) y=9
Need help? Visit www.rsgsupport.org
Mathematics Vision Project
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9. Find a square piece of paper (a post-it note will work).

Fold the square in half vertically and put a dot anywhere

on the fold. Let the edge of the paper be the directrix and

the dot be the focus. Fold the edge of the paper (the directrix) up :
to the dot repeatedly from different points along the edge. \, : R
The fold lines between the focus and the edge should make N, F.« 7
a parabola. N e

Experiment with a new paper and move the focus.
Use your experiments to answer the following questions.

10. How would the parabola change if the focus were moved up, away from the directrix?
11. How would the parabola change if the focus were moved down, toward the directrix?

12. How would the parabola change if the focus were moved down, below the directrix?

GO

Topic: Finding the center and radius of a circle.

Write each equation so that it shows the center (h, k) and radius r of the circle. This called the
standard form of a circle. (x — h)? + (y — k)? = r?

13. x> +y +4y-12=0 14. x*+y*—6x-3=0
15.x° +y* +8x+4y-5=0 16. x> +y*—6x—10y-2=0
17. x*+y*=6y—-7=0 18. x*+y —4x+8y+6=0
19. x*+y —4x+6y—-72=0 20. X’ +y +12x+6y—59=0
21. x*+y" —2x+10y+21=0 22. 4x° +4y* +4x—4y—1=0

Need help? Visit www.rsgsupport.org
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[¢]
6.8 Functioning With 2
>
&
Parabolas g
A Solidify Understanding Task
Sketch the graph (accurately), find the vertex and use the geometric definition of a parabola to find
the equation of these parabolas.
1. Directrixy = —4, Focus A(2, -2)
Vertex ______
Equation:
2. Directrixy = 2, Focus A(-1, 0)
Vertex ______
Equation:
Mathematics Vision Project “v- )
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3. Directrixy = 3,Focus A(1,7)

3. Directrixy = 3, FocusA(2,-1)

Mathematics Vision Project
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4. Given the focus and directrix, how can you find the vertex of the parabola?

5. Given the focus and directrix, how can you tell if the parabola opens up or down?

6. How do you see the distance between the focus and the vertex (or the vertex and the

directrix) showing up in the equations that you have written?

7. Describe a pattern for writing the equation of a parabola given the focus and directrix.
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8. Annika wonders why we are suddenly thinking about parabolas in a completely
different way than when we did quadratic functions. She wonders how these different
ways of thinking match up. For instance, when we talked about quadratic functions
earlier we started with y = x2. “Hmmmm. ....] wonder where the focus and directrix

would be on this function,” she thought. Help Annika find the focus and directrix for

y = x2

9. Annika thinks, “Ok, I can see that you can find the focus and directrix for a quadratic
function, but what about these new parabolas. Are they quadratic functions? When we
work with families of functions, they are defined by their rates of change. For instance,
we can tell a linear function because it has a constant rate of change.” How would you
answer Annika? Are these new parabolas quadratic functions? Justify your answer

using several representations and the parabolas in problems 1-4 as examples.

Mathematics Vision Project “ )
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6.8 Functioning With Parabolas
A Solidify Understanding Task

Purpose: The purpose of this task is to solidify students’ understanding of the geometric definition
of a parabola and to connect it to their previous experiences with quadratic functions. The task
begins with students writing equations for specific parabolas with specific relationships between
the focus and directrix. Students use this experience to generalize a strategy for writing the
equation of a parabola, solidifying how to find the vertex and to use the distance between the focus
and the vertex (or the distance between the vertex and the directrix) in writing an equation.
Students are then asked to find the focus and directrix for y = x? to illustrate that the focus and
directrix could be identified for the parabolas that they worked with as the graphs of quadratic
functions. Finally, they are asked to verify that parabolas constructed with a horizontal directrix

from a geometric perspective will also be quadratic functions, based upon a linear rate of change.
Core Standards Focus:

G.GPE Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section

G-GPE.2. Derive the equation of a parabola given a focus and directrix.

Note: Connect the equations of circles and parabolas to prior work with quadratic equations. The

directrix should be parallel to a coordinate axis.

Standards for Mathematical Practice:

SMP 8 - Look for express regularity in repeated reasoning

The Teaching Cycle:
Launch (Whole Class):
Begin by having students individually work the first problem. Have one student that has done a

good job of accurately sketching the parabola demonstrate for the class. The first problems are
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very similar to the work done in “Directing Our Focus”, but each problem has been selected so that
students will see different distances between the focus and the directrix and use them to draw
conclusions later in the task. After the first problem is done as a class, the rest of the task can be

done in small groups.

Explore (Small Group):

As students are working on the task, listen to see what they are noticing about finding the vertex.
They should identify that the vertex is on the line of symmetry, which is perpendicular to the
directrix, and that the vertex is the midpoint between the focus and directrix. They should also be
noticing how it shows up in the equation, particularly that it is easier to recognize if the (x — h)?
term in the equation is not expanded. They should also notice the distance from the vertex to the
focus, p, and where that is occurring in the equation. Identify students for the discussion that can
describe the patterns that they see with the parabola and the equation and have developed a good

“recipe” for writing an equation.

As you monitor student work on #10, identify student use of tables, equations, and graphs to
demonstrate that the parabolas they are working with fit into the quadratic family of functions

because they have linear rates of change.

Discuss (Whole Class):

Begin the discussion with question #8. Ask a couple of groups that have developed an efficient
strategy for writing the equation of a parabola given the focus and directrix to present their work.
(Students will be asked to generate a general form of the equation in the RSG). Ask the class to
compare and edit the strategies so that they have a method that they are comfortable with using for
this purpose. Then ask them to use the process in reverse and tell how they found the focus and

directrix fory = x? (question 9).

Move the discussion to #10. Ask various students to show how the parabolas are quadratic

functions using tables, graphs, and equations. Focus on how the linear rate of change shows up in

Mathematics Vision Project “ )
Licensed under the Creative Commons Attribution CC BY 4.0 ma th ematics
mathematicsvisionproject.org vision @) I'Oj ect



GEOMETRY // MODULE 6
CONNECTING ALGEBRA & GEOMETRY - 6.8

each representation. Connect the equations and graphs to the transformation perspective that they

worked with in previous modules.

Aligned Ready, Set, Go: Connecting Algebra & Geometry 6.8
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READY, SET, GO! Name Period Date

READY

Topic: Standard form of a quadratic.

Verify that the given point lies on the graph of the parabola described by the equation.
(Show your work.)

1. (6,0) y=2x"-9x—18 2. (-2,49) y=25x>+30x+9
3. (5,53) y=3x2—4x—2 4. (8,2) yzixz—x—6
SET

Topic: Equation of parabola based on the geometric definition

1 C (4.,5)
5. Verify that (y - l) = sz is the equation

of the parabola in figure 1 by plugging in the
3 points V (0,1), C (4,5) and E (2,2).
Show your work for each point!

F(0,2) 2 E(22)

V(0,1)

Figure 1

6. If you didn’t know that (0,1) was the vertex of the parabola, could you have found it by just looking at
the equation? Explain.

Need help? Visit www.rsgsupport.org
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7. Use the diagram in figure 2 to derive the general equation of a parabola based on the geometric
definition of a parabola. Remember that the definition states that MF = MQ.

-
-
-----
-
-
-

-
-
....
-
-

Figure 2

directrix y = -p

"""""""" R 1)

1
8. Recall the equation in #5, (y - 1) = sz, what is the value of p?
9. In general, what is the value of p for any parabola?
10. In figure 3, the point M is the same height as the focus and FM = MR . How do the coordinates of

this point compare with the coordinates of the focus?
Fill in the missing coordinates for M and R in the diagram.

Figure 3
directrix y = -p :
————————————————— e ——————— e ————————
R(C , )
Need help? Visit www.rsgsupport.org
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Sketch the graph by finding the vertex and the point M and R (the reflection of M) as defined in
the diagram above. Use the geometric definition of a parabola to find the equation of these
parabolas.

11. Directrix y =9, Focus F(-3, 7) 12. Directrix y = -6, Focus F(2, -2)
Vertex Vertex

Equation Equation

13. Directrix y =5, Focus F(-4, -1) 14. Directrix y = -1, Focus F(4, -3)
Vertex Vertex

Equation Equation

Need help? Visit www.rsgsupport.org
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GO

Topic: Finding minimum and minimum values for quadratics

Find the maximum or minimum value of the quadratic. Indicate which it is.

15. y=x"+6x-5 16. y=3x"—12x+8
17. y:—%x2+10x+13 18. y=-5x"+20x—11
7, 3
19. yzax -21x-3 20. yz—Ex +9x+25

Need help? Visit www.rsgsupport.org
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(o]
=]
c
6.9 Turn It Around kS
- , 3
A Solidify Understanding Task ‘ I / >
‘ O
1 v
7
Z
Annika is thinking more about the geometric view of parabolas that she has been working on in
math class. She thinks, “Now I see how all the parabolas that come from graphing quadratic
functions could also come from a given focus and directrix. I notice that all the parabolas have
opened up or down when the directrix is horizontal. I wonder what would happen if I rotated the
focus and directrix 90 degrees so that the directrix is vertical. How would that look? What would
the equation be? Hmmm....” So Annika starts trying to construct a parabola with a vertical
directrix. Here’s the beginning of her drawing. Use a ruler to complete Annika’s drawing.
A (T A e e A A A
L Y 60 S L S N S
TR SN YR S /7 S TR S RS SN S
LU S SO S SO S/ S LN S S A S S S
I I s H N T U O
T 5 Kl 0 ] ) 3 T 3 5 10 R 12
SRR S SN]SR S LS S TS S NS S NS S
RS O Y N U \ N N S O U U S A
e NN b
e T o e
1. Use the definition of a parabola to write the equation of Annika’s parabola.
Mathematics Vision Project “ )
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2. What similarities do you see to the equations of parabolas that open up or down? What
differences do you see?

3. Try another one: Write the equation of the parabola with directrix x = 4 and focus (0, 3).

4. One more for good measure: Write the equation of the parabola with directrix x = -3 and

focus (-2, -5).

5. How can you predict if a parabola will open left, right, up, or down?

6. How can you tell how wide or narrow a parabola is?

7. Annika has two big questions left. Write and explain your answers to these questions.
a. Are all parabolas functions?

b. Are all parabolas similar?

Mathematics Vision Project “ )
Licensed under the Creative Commons Attribution CC BY 4.0 B ma th ematics
mathematicsvisionproject.org vision @) I'Oj ect

50



GEOMETRY // MODULE 6
CONNECTING ALGEBRA & GEOMETRY - 6.9

6.9 Turn It Around - Teacher Notes
A Solidify Understanding Task

Special Note to Teachers: Rulers should be available for student use in this task.

Purpose: The purpose of this task is to generalize the work that students have done with
parabolas that have a horizontal directrix (including those generated as quadratic functions), and
extend the idea to parabolas with a vertical directrix. In the task, they graph and write equations
for parabolas that have vertical directrices. They are asked to consider the idea that not all
parabolas are functions, even though they have quadratic equations. The task ends with

constructing an argument that all parabolas, like circles, are similar.

Core Standards Focus:

G.GPE Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section
G.GPE.2. Derive the equation of a parabola given a focus and directrix.

Note: Connect the equations of circles and parabolas to prior work with quadratic equations. The

directrix should be parallel to a coordinate axis.

Standards for Mathematical Practice:
SMP 7 - Look for and make use of structure

SMP 8 - Look for express regularity in repeated reasoning

The Teaching Cycle:

Launch (Whole Class):

Before handing out the task, ask students to think back to the lesson when they constructed a
parabola by placing tacks on a board with a given focus and horizontal directrix. Ask students what

shape would be constructed if they did the same thing with the strings and tacks, but the directrix
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was vertical and the focus was to the right of the directrix. After a brief discussion, distribute the
task and have students complete the diagram and write the equation of the parabola. Ask a student
to demonstrate how they wrote the equation using the distance formulas, just like they did
previously with other parabolas. After the demonstration, students can work together to discuss

the remaining questions in the task.

Explore (Small Group):
Monitor student work as they write the equations to see that they are considering which
expressions to expand and simplify. Since they have previously expanded the y2 expression, they

may not recognize that it will be more convenient in this case to expand the (x - b)2 term.

Listen to student discussion of #7 to find productive comments for the class discussion. Students
should be talking about the idea that a function has exactly one output for each input, unlike these
parabolas. Some may also talk about the vertical line test. Encourage them to explain the basis for

the vertical line test, rather than just to cite it as a rule.

The question about whether all parabolas are similar may be more controversial because they don’t
seem to look similar in the way that other shapes do. Listen to students that are reasoning using
the ideas of translation and dilation, particularly noting how they can justify this using a geometric

perspective with the definition or arguing from the equation.

Discuss (Whole Class):
Begin the discussion with question #5. Press students to explain how to tell which direction the
parabola opens given an equation or focus and directrix. Create a chart that solidifies the

conclusions for students.

Move the discussion to question #7a. Ask students to describe why some parabolas are not
functions. Be sure that the discussion relies on the idea of a function having exactly one output for
each input, rather than simply the vertical line test or the idea that it’s not a function if the equation

contains a y2. In either case, press students to relate their idea to the definition of function.
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Close the discussion with students’ ideas about question #7b. Allow the arguments to be informal,

but focused on how they know that any parabola can be obtained from any other by the process of

dilation and translation.

Aligned Ready, Set, Go: Connecting Algebra & Geometry 6.9
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READY, SET, GO! Name Period Date

READY

Topic: Circles Review

Use the given information to write the equation of the circle in standard form.

6

1. Center: (-5,-8), Radius: 11

2. Endpoints of the diameter: (6,0) and (2, -4)

2 o 3,2

3. Center (-5, 4) : Point on the circle (-9, 1)

-2 =1

4. Equation of the circle in the diagram to the right.

SET

Topic: Writing equations of horizontal parabolas.
Use the focus F, point M, a point on the parabola, and the equation of the directrix to sketch the

parabola (label your points) and write the equation. Put your equation in the form

1 . .
X= 0 (¥ — k)? + h where “p” is the distance from the focus to the vertex.

5. F(1,0), M(1,4) x=-3 6. F(3,1), M(3,5) x=9

Need help? Visit www.rsgsupport.org
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7. F(7,-5), M (4,-1) x=9 8. F(-1,2), M(6,9) x=-7

GO

Topic: Identifying key features of a quadratic written in vertex form
State (a) the coordinates of the vertex, (b) the equation of the axis of symmetry, (c) the domain,

and (d) the range for each of the following functions.

9. f(x)=(x=3)"+5 10. f(x)=(x+1)"-2 11. f(x)=—(x=3)"=7
12 f(x):—3(x—%)2+% 30 7()=2(x-4) 41 1 f()=1(e2) -

15. Compare the vertex form of a quadratic to the geometric definition of a parabola based on the focus
and directrix. Describe how they are similar and how they are different.

Need help? Visit www.rsgsupport.org
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