Transforming Mathematics Education

SECONDARY MATH ONE
An Integrated Approach

Standard Teacher Notes

MODULE 2
Linear & Exponential Functions
Module 2 - Table of Contents

Linear and Exponential Functions

2.1 Piggies and Pools – A Develop Understanding Task
Introducing continuous linear and exponential functions (F.IF.3)
READY, SET, GO Homework: Linear and Exponential Functions 2.1

2.2 Shh! Please Be Discreet (Discrete!) – A Solidify Understanding Task
Connecting context with domain and distinctions between discrete and continuous functions (F.IF.3, F.BF.1a, F.LE.1, F.LE.2)
READY, SET, GO Homework: Linear and Exponential Functions 2.2

2.3 Linear Exponential or Neither – A Practice Understanding Task
Distinguishing between linear and exponential functions using various representations (F.LE.3, F.LE.5)
READY, SET, GO Homework: Linear and Exponential Functions 2.3

2.4 Getting Down to Business – A Solidify Understanding Task
Comparing growth of linear and exponential models (F.LE.2, F.LE.3, F.LE.5, F.IF.7, F.BF.2)
READY, SET, GO Homework: Linear and Exponential Functions 2.4

2.5 Making My Point – A Solidify Understanding Task
Interpreting equations that model linear and exponential functions (A.SSE.1, A.CED.2, F.LE.5, A.SSE.6)
READY, SET, GO Homework: Linear and Exponential Functions 2.5

2.6 Form Follows Function – A Solidify Understanding Task
Building fluency and efficiency in working with linear and exponential functions in their various forms (F.LE.2, F.LE.5, F.IF.7, A.SSE.6)
READY, SET, GO Homework: Linear and Exponential Functions 2.6
2.1 Connecting the Dots: Piggies and Pools

A Develop Understanding Task

1. My little sister, Savannah, is three years old. She has a piggy bank that she wants to fill. She started with five pennies and each day when I come home from school, she is excited when I give her three pennies that are left over from my lunch money. Use a table, a graph, and an equation to create a mathematical model for the number of pennies in the piggy bank on day \(n \).

2. Our family has a small pool for relaxing in the summer that holds 1500 gallons of water. I decided to fill the pool for the summer. When I had 5 gallons of water in the pool, I decided that I didn’t want to stand outside and watch the pool fill, so I had to figure out how long it would take so that I could leave, but come back to turn off the water at the right time. I checked the flow on the hose and found that it was filling the pool at a rate of 2 gallons every minute. Use a table, a graph, and an equation to create a mathematical model for the number of gallons of water in the pool at \(t \) minutes.
3. I’m more sophisticated than my little sister so I save my money in a bank account that pays me 3% interest on the money in the account at the end of each month. (If I take my money out before the end of the month, I don’t earn any interest for the month.) I started the account with $50 that I got for my birthday. Use a table, a graph, and an equation to create a mathematical model of the amount of money I will have in the account after m months.

4. At the end of the summer, I decide to drain the 1500 gallon swimming pool. I noticed that it drains faster when there is more water in the pool. That was interesting to me, so I decided to measure the rate at which it drains. I found that 3% was draining out of the pool every minute. Use a table, a graph, and an equation to create a mathematical model of the gallons of water in the pool at t minutes.
5. Compare problems 1 and 3. What similarities do you see? What differences do you notice?

6. Compare problems 1 and 2. What similarities do you see? What differences do you notice?

7. Compare problems 3 and 4. What similarities do you see? What differences do you notice?
2.1 Connecting the Dots: Piggies and Pools – Teacher Notes

A Develop Understanding Task

Special Note to Teachers: Problem number three uses the ideas of compound interest, but in an informal way. Students are expected to draw upon their past work with geometric sequences to create representations that they are familiar with. The formula for compound interest will be developed later in the course.

Purpose: This task builds upon students’ experiences with arithmetic and geometric sequences to extend to the broader class of linear and exponential functions with continuous domains. The term “domain” should be introduced and used throughout the whole group discussion. Students are given contextual situations that can be modeled with either discrete and continuous linear functions, or discrete and continuous exponential functions. They are also asked to compare these types of functions using various representations.

New Vocabulary:
Domain
Discrete function
Continuous function

Core Standards Focus:

F.IF.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

F.BF.1: Write a function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process, or steps from a calculation from a context.

F.LE.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.

F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Standards for Mathematical Practice of Focus in the Task:

- **SMP 1** - Make sense of problems and persevere in solving them.
- **SMP 7** - Look for and make use of structure.

The Teaching Cycle

Launch (Whole Class):

Begin the lesson by helping students to read the four problems and understand the contexts. Since students are already comfortable with arithmetic and geometric sequences and their representations, these questions should be quite familiar, with no need for the teacher to offer a suggested path for solving them. Remind students that their mathematical models should include tables, graphs, and equations.

Explore (Small Group):

As students begin working, circulate among the groups to see that students understand the problems. Problems 1 and 2 are fairly straightforward, but there are possible interpretations that
could lead to productive discussions in questions 3 and 4. In problem 3, they will need to consider that the account pays 3% on the principal and whatever interest is in the account from previous months. In problem 4, they will have to consider how to deal with the 3%. Watch for students that try subtracting 3% of the original amount each time (using linear thinking), rather than subtracting 3% of the existing amount of water in the pool at the given time.

Select student work that makes use of tables, graphs and explicit equations. Listen for students that are noticing that the graphs of #1 and #3 should be unconnected points, while #2 and #4 will be connected.

Discuss (Whole Class):

Start the discussion by asking students to present a table, graph, and equation for problem #1. Be sure that the graph is unconnected points. Ask students what they know about the relationship described in #1. They should know it to be an arithmetic sequence.

Next, present a table, graph, and equation for problem #2. This graph should be a solid line. (If no student has a solid line graph, use a graph that is otherwise correct and ask students to consider if it would be possible to have points in between the ones that have been marked, based upon the current context. Once they have discussed that the water is filling continuously, fill in the rest of the line.)

Now ask students to compare the two functions. Create a chart of similarities and differences. Students should notice that they both have a constant rate of change, both are increasing or have a positive slope. They may not have noticed differences, so this is the time to highlight the difference between a continuous context (water filling) and a discrete context where pennies are added a few at a time, with no change in between. Start with how this difference shows in the graph, then proceed to the table. Often, students choose only whole number or integer inputs for their tables. If this is the case, ask them if using some fractions or decimal numbers for inputs would make sense in each of the contexts. Introduce the idea that the inputs for a function are the domain. The input on problem #1 is the number of days. Since money is only put in once a day, then it doesn’t make sense to have inputs like \(\frac{1}{2} \) or 3.5. That makes the domain the set of whole numbers. (Assuming
she started with 5 pennies on day 0). Discuss the domain of the function generated by problem #2. Students should recognize that the domain is time, and that the water level in the pool is increasing continuously as time passes. They should also recognize that the time measurement can’t be negative, so the domain in this case is real numbers greater than or equal to 0, assuming that 0 is the time that they started filling the pool.

Proceed with the discussion of #3 and #4 in a similar fashion. Again emphasize that the domain of #3 is whole numbers. Tell students that sequences have whole number domains. Functions that are not discrete are not sequences, therefore, we do not use the terms arithmetic or geometric sequences even though they may exhibit similar growth patterns. More work will be done in the next two tasks to define linear and exponential functions by their patterns of growth, so the emphasis in this task needs to be on the difference between the terms discrete and continuous.

Aligned Ready, Set, Go: Linear and Exponential Functions 2.1
READY
Topic: Recognizing arithmetic and geometric sequences
Predict the next 2 terms in the sequence. State whether the sequence is arithmetic, geometric, or neither. Justify your answer.
1. 4, -20, 100, -500, ...
2. 3, 5, 8, 12, ...
3. 64, 48, 36, 27, ...
4. 1.5, 0.75, 0, -0.75, ...
5. 40, 10, \(\frac{5}{2}\), \(\frac{5}{8}\), ...
6. 1, 11, 111, 1111, ...
7. -3.6, -5.4, -8.1, -12.15, ...
8. -64, -47, -30, -13, ...

9. Create a predictable sequence of at least 4 numbers that is NOT arithmetic or geometric.

SET
Topic: Discrete and continuous relationships
Identify whether the following statements represent a discrete or a continuous relationship.

10. The hair on your head grows \(\frac{1}{2}\) inch per month.
11. For every ton of paper that is recycled, 17 trees are saved.
13. The average person laughs 15 times per day.
14. The city of Buenos Aires adds 6,000 tons of trash to its landfills every day.
15. During the Great Depression, stock market prices fell 75%.
GO

Topic: Solving one-step equations

Either find or use the unit rate for each of the questions below.

16. Apples are on sale at the market 4 pounds for $2.00. What is the price (in cents) for one pound?

17. Three apples weigh about a pound. About how much would one apple cost? (Round to the nearest cent.)

18. One dozen eggs cost $1.98. How much does 1 egg cost? (Round to the nearest cent.)

19. One dozen eggs cost $1.98. If the charge at the register for only eggs, without tax, was $11.88, how many dozen were purchased?

20. Best Buy Shoes had a back to school special. The total bill for four pairs of shoes came to $69.24 (before tax.) What was the average price for each pair of shoes?

21. If you only purchased 1 pair of shoes at Best Buy Shoes instead of the four described in problem 20, how much would you have paid, based on the average price?

Solve for x. Show your work.

22. $6x = 72$

23. $4x = 200$

24. $3x = 50$

25. $12x = 25.80$

26. $\frac{1}{2}x = 17.31$

27. $4x = 69.24$

28. $12x = 198$

29. $1.98x = 11.88$

30. $\frac{1}{4}x = 2$

31. Some of the problems 22 – 30 could represent the work you did to answer questions 16 – 21. Write the number of the equation next to the story it represents.
2.2 Shh! Please Be Discreet (Discrete)!

A Solidify Understanding Task

1. The Library of Congress in Washington D.C. is considered the largest library in the world. They often receive boxes of books to be added to their collection. Since books can be quite heavy, they aren’t shipped in big boxes. If, on average, each box contains about 8 books, how many books are received by the library in 6 boxes, 10 boxes, or \(n \) boxes?
 a. Use a table, a graph, and an equation to model this situation.

 b. Identify the domain of the function.

2. Many of the books at the Library of Congress are electronic. If about 13 e-books can be downloaded onto the computer each hour, how many e-books can be added to the library in 3 hours, 5 hours, or \(n \) hours (assuming that the computer memory is not limited)?
 a. Use a table, a graph, and an equation to model this situation.

 b. Identify the domain of the function.
3. The librarians work to keep the library orderly and put books back into their proper places after they have been used. If a librarian can sort and shelve 3 books in a minute, how many books does that librarian take care of in 3 hours, 5 hours, or \(n \) hours?

Use a table, a graph, and an equation to model this situation.

4. Would it make sense in any of these situations for there to be a time when 32.5 books had been shipped, downloaded into the computer or placed on the shelf?

5. Which of these situations (in problems 1-3) represent a discrete function and which represent a continuous function? Justify your answer.
6. A giant piece of paper is cut into three equal pieces and then each of those is cut into three equal pieces and so forth. How many papers will there be after a round of 10 cuts? 20 cuts? n cuts?

<table>
<thead>
<tr>
<th>Zero Cuts</th>
<th>One Cut</th>
<th>Two Cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Zero Cuts Diagram]</td>
<td>![One Cut Diagram]</td>
<td>![Two Cuts Diagram]</td>
</tr>
</tbody>
</table>

a. Use a table, a graph, and an equation to model this situation.

b. Identify the domain of the function.

c. Would it make sense to look for the number of pieces of paper at 5.2 cuts? Why?

d. Would it make sense to look for the number of cuts it takes to make 53.6 papers? Why?
7. Medicine taken by a patient breaks down in the patient’s blood stream and dissipates out of the patient’s system. Suppose a dose of 60 milligrams of anti-parasite medicine is given to a dog and the medicine breaks down such that 20% of the medicine becomes ineffective every hour. How much of the 60 milligram dose is still active in the dog’s bloodstream after 3 hours, after 4.25 hours, after \(n \) hours?
 a. Use a table, a graph, and an equation to model this situation.

 b. Identify the domain of the function.

 c. Would it make sense to look for an amount of active medicine at 3.8 hours? Why?

 d. Would it make sense to look for when there is 35 milligrams of medicine? Why?
8. Which of the functions modeled in #6 and #7 are discrete and which are continuous? Why?

9. What needs to be considered when looking at a situation or context and deciding if it fits best with a discrete or continuous model?

10. Describe the differences in each representation (table, graph, and equation) for discrete and continuous functions.

11. Which of the functions modeled above are linear? Which are exponential? Why?
2.2 Shh! Please Be Discreet (Discrete)! – Teacher Notes

A Solidify Understanding Task

Purpose:
The purpose of this task is for students to explicitly consider when a discrete or continuous model is appropriate for a given context. The situations in this task are designed to contrast discrete and continuous models for both linear and exponential functions. The task also provides opportunity for students to model with mathematics by connecting the type of change, either linear or exponential with the nature of that change, either discrete or continuous.

Core Standards Focus:

F-IF.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

F-BF.1a: Determine an explicit expression, a recursive process, or steps from a calculation from a context.

F.LE.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.

F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relations, or two input-output pairs (include reading these from a table).

a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Standards for Mathematical Practice of Focus in the Task:

SMP 4 - Model with mathematics.
SMP 6 - Attend to precision.

The Teaching Cycle

Launch (Whole Class):

Begin class by reviewing previous work on the idea that the domain of a function is the set of input values or independent variable. Introduce the essential question and launch the task by ensuring that students understand the context and know what they are expected to do.

Explore (Small Group):

As students are working through the task, they may need support in reading the problems and understanding the contexts, which is critical in considering whether the models should be continuous or discrete. Listen for students articulating the idea that the change is happening gradually over the interval (continuous) or all at once (discrete). Also listen for connections that can be shared during the whole group discussion of the domain and the type of model. For instance, students may argue in #3 that since the input variable is time, the model should be continuous. Others may argue that the books aren’t actually placed on the shelf continuously, so the model should be discrete. These are the type of arguments that should be considered by the class to help shape the discussion of discrete and continuous.

Discuss (Whole Class):

Begin the discussion with comparing the graphs and equations for problems #1 and #2. Ask students if the points on the graph of #1 should be connected. Ask for justifications such as the idea that the number of books increases by a given amount for each box, not building up gradually.
Follow by having a student share the graph and equation for #2 and ask if the points on the graph should be connected. In this case, the graph should be continuous because parts of the books are being downloaded as the time continues (the progress bar for a download is familiar to most students). Ask students how they can generally decide if the points should be connected or not. Emphasize the terms discrete and continuous for these two types of models. Consider the domains for the two functions #1 and #2. How are the domains of these two functions different? Why?

Move the discussion to models of #3. Have a student share their model (either continuous or discrete) and ask the class for arguments as to whether or not the model should be discrete or continuous. Be sure that students discuss the idea that the domain in this case is continuous, but the outputs are not because the librarians can’t shelve half of a book. This is the type of situation that is often modeled as a continuous function for the sake of simplicity. Emphasize that whenever we model a real situation, we make assumptions that should be made thoughtfully and explicitly.

The equations that are written for discrete and continuous equations are also worthy of discussion. Students should consider whether or not it makes sense to write a recursive equation for a continuous function. How would such a formula work on a continuous domain? Recursive formulas are for sequences, which are defined on whole number domains. It is difficult to determine whether an explicit equation is continuous or discrete without a particular context. It is common in the mathematical community to assume that x is a continuous variable in the absence of other information. The variable used for whole number or natural number domains is often n. This may be a useful convention for the class.

Wrap up the discussion by comparing the discrete function in #1 with the discrete function in #6. How are they alike? How are they different? Repeat by comparing the continuous functions in #2 and #7. How are they alike? How are they different?

Aligned Ready, Set, Go: Linear and Exponential Functions 2.2
READY

Topic: Comparing rates of change in linear situations.

State which situation has the greatest rate of change

1. The amount of stretch in a short bungee cord stretches 6 inches when stretched by a 3 pound weight. A slinky stretches 3 feet when stretched by a 1 pound weight.

2. A sunflower that grows 2 inches every day or an amaryllis that grows 18 inches in one week.

3. Pumping 25 gallons of gas into a truck in 3 minutes or filling a bathtub with 40 gallons of water in 5 minutes.

4. Riding a bike 10 miles in 1 hour or jogging 3 miles in 24 minutes.

SET

Topic: Discrete and continuous relationships

Identify whether the following items best fit with a discrete or a continuous model. Then determine whether it is a linear (arithmetic) or exponential (geometric) relationship that is being described.

5. The freeway construction crew pours 300 ft of concrete in a day.
6. For every hour that passes, the amount of area infected by the bacteria doubles.
7. To meet the demands placed on them the brick layers have started laying 5% more bricks each day.
8. The average person takes 10,000 steps in a day.
9. The city of Buenos Aires has been adding 8% to its population every year.
10. At the headwaters of the Mississippi River the water flows at a surface rate of 1.2 miles per hour.
11. a. \(f(n) = f(n - 1) + 3; f(1) = 5 \)

11. b. \(g(x) = 2^x(7) \)

Mathematics Vision Project
Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org
GO

Topic: Solving one-step equations

Solve the following equations. Remember that what you do to one side of the equation must also be done to the other side. (Show your work, even if you can do these in your head.)

Example: Solve for x.
\[
1x + 7 = 23 \quad \text{Add } -7 \text{ to both sides of the equation.}
\]

\[
\begin{align*}
1x + 7 &= 23 \\
-7 &= -7 \\
1x + 0 &= 16 \\
\text{Therefore } 1x &= 16
\end{align*}
\]

Example: Solve for x.
\[
9x = 63 \quad \text{Multiply both sides of the equation by } \frac{1}{9}.
\]

\[
\begin{align*}
9x &= 63 \\
\left(\frac{1}{9}\right)9x &= \left(\frac{1}{9}\right)63 \\
\left(\frac{9}{9}\right)x &= \frac{63}{9} \\
1x &= 7
\end{align*}
\]

Note that multiplying by $\frac{1}{9}$ gives the same result as dividing everything by 9.

11. $1x + 16 = 36$
12. $1x - 13 = 10$
13. $1x - 8 = -3$
14. $8x = 56$
15. $-11x = 88$
16. $425x = 850$
17. $\frac{1}{6}x = 10$
18. $-\frac{4}{7}x = -1$
19. $\frac{3}{4}x = -9$
2.3 Linear, Exponential or Neither?

A Practice Understanding Task

For each representation of a function, decide if the function is linear, exponential, or neither. Give at least 2 reasons for your answer.

1. [Graph with points and axes]

 - Linear
 - Exponential
 - Neither

 Why?

2. Tennis Tournament

<table>
<thead>
<tr>
<th>Rounds</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Players left</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

 There are 4 players remaining after 5 rounds

 - Linear
 - Exponential
 - Neither

 Why?
3.

| $y = 4x$ | Linear | Exponential | Neither |

Why?

4.

This function is decreasing at a constant rate.

| Linear | Exponential | Neither |

Why?

5.

[Graph of a function with points at (1, 0.5), (2, 1), (3, 1.5), (4, 2), (5, 2.5), (6, 3), (7, 3.5)]

| Linear | Exponential | Neither |

Why?
6. A person's height as a function of a person's age (from age 0 to 100)

<table>
<thead>
<tr>
<th>Linear</th>
<th>Exponential</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why?

7.

\[-3x = 4y + 7\]

Linear | Exponential | Neither |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why?

8.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>-13</td>
</tr>
<tr>
<td>4</td>
<td>-31</td>
</tr>
<tr>
<td>6</td>
<td>-49</td>
</tr>
</tbody>
</table>

Linear | Exponential | Neither |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why?
9. Height in inches and shoe size:

<table>
<thead>
<tr>
<th>Height in Inches</th>
<th>Shoe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>67</td>
<td>11</td>
</tr>
<tr>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>58</td>
<td>7</td>
</tr>
</tbody>
</table>

Linear, Exponential, Neither
Why?

10. The number of cell phone users in Centerville as a function of years, if the number of users is increasing by 75% each year.

Linear, Exponential, Neither
Why?

11. Why?
12.
The time it takes you to get to work as a function the speed at which you drive

<table>
<thead>
<tr>
<th>Linear</th>
<th>Exponential</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Why?</td>
</tr>
</tbody>
</table>

13.
\[y = 7x^2 \]

<table>
<thead>
<tr>
<th>Linear</th>
<th>Exponential</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Why?</td>
</tr>
</tbody>
</table>

14.
Each point on the graph is exactly 1/3 of the previous point.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Exponential</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Why?</td>
</tr>
<tr>
<td></td>
<td>Linear</td>
<td>Exponential</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>15. $f(1) = 7, f(2) = 7, f(n) = f(n - 1) + f(n - 2)$</td>
<td>Linear</td>
<td>Exponential</td>
</tr>
<tr>
<td>Why?</td>
<td>Why?</td>
<td></td>
</tr>
<tr>
<td>16. $f(1) = 1, f(n) = \frac{2}{3}f(n - 1)$</td>
<td>Linear</td>
<td>Exponential</td>
</tr>
<tr>
<td>Why?</td>
<td>Why?</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Linear, Exponential or Neither? – Teacher Notes

A Practice Understanding Task

Purpose:
The purpose of this task is to develop fluency in determining if a function is linear or exponential using various representations. The task also provides opportunities for discussion of features of the functions based upon the representation given.

Core Standards Focus:

F-LE1: Distinguish between situations that can be modeled with linear functions and with exponential functions.

F-LE2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relations, or two input-output pairs (include reading these from a table).

 a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
 b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
 c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Standards for Mathematical Practice of Focus in the Task:

 SMP 6 – Attend to precision.
 SMP 7 – Look for and make use of structure.

The Teaching Cycle:

Launch (Whole Class):

Refer the class to the linear and exponential charts made in the previous task. In this task they will be looking at a number of functions, some linear, some exponential, some neither. They need to identify what kind of function is shown in each problem and provide two reasons for their answers. One reason may be fairly easy, based upon the chart, the second one will require them to stretch a little.
Explore (Small Group):

During the small group work, listen for problems that are generating controversy. If students feel that a particular problem is too vague, ask them what information would be necessary for them to decide and why that information is important.

Discuss (Whole Class):

Start the discussion by going through each problem and asking a group to say how they categorized it and why. After each problem, ask if there was any disagreement or if another group could add another reason to support the category. If there is disagreement, ask students to present their arguments more formally and add at least one representation to support their claim. The emphasis of the discussion should be to recognize the constant rate of change to define a linear function and the equal factors over equal intervals that define an exponential function. Be sure that the class discussion includes a table, a graph, an equation, and a description or story context for both linear and exponential functions.

Aligned Ready, Set, Go: Linear and Exponential Functions 2.3
READY

Topic: Comparing rates of change in both linear and exponential situations.

Identify whether situation “a” or situation “b” has a greater rate of change.

1. a.
 \[
 \begin{array}{c|c}
 x & y \\
 \hline
 -10 & -48 \\
 -9 & -43 \\
 -8 & -38 \\
 -7 & -33 \\
 \end{array}
 \]

2. a.
 \[
 \text{Graph}
 \]

3. a. Lee has $25 withheld each week from his salary to pay for his subway pass.

4. a.
 \[
 \begin{array}{c|c|c|c|c}
 x & 6 & 10 & 14 & 18 \\
 \hline
 y & 13 & 15 & 17 & 19 \\
 \end{array}
 \]

5. a. \(y = 2(5)^x \)
SET
Topic: Recognizing linear and exponential functions. Based on each of the given representations of a function determine if it is linear, exponential or neither.

6. The population of a town is decreasing at a rate of 1.5% per year.
7. Joan earns a salary of $30,000 per year plus a 4.25% commission on sales.
8. $3x + 4y = -3$
9. The number of gifts received each day of “The 12 Days of Christmas” as a function of the day. (“On the 4th day of Christmas my true love gave to me, 4 calling birds, 3 French hens, 2 turtledoves, and a partridge in a pear tree.”)

10. [Grid diagram]

GO
Topic: Geometric means
For each geometric sequence below, find the missing terms in the sequence.

12. | x | 1 | 2 | 3 | 4 | 5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>

13. | x | 1 | 2 | 3 | 4 | 5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/9</td>
<td></td>
<td></td>
<td></td>
<td>-3</td>
</tr>
</tbody>
</table>

14. | x | 1 | 2 | 3 | 4 | 5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>0.625</td>
</tr>
</tbody>
</table>
Find the rate of change (slope) in each of the exercises below.

17. \(\begin{array}{c|c}
15. & x & 1 & 2 & 3 & 4 & 5 \\
y & g & & & & & gz^4 \\
\end{array} \)

16. \(\begin{array}{c|c|c|c|c|c|c}
16. & x & 1 & 2 & 3 & 4 & 5 \\
y & -3 & & & & & -243 \\
\end{array} \)

18. \(\begin{array}{c|c|c}
18. & t & 3 & 13 \\
h(t) & 8 & 23 \\
\end{array} \)

19. \(\begin{array}{c|c|c}
19. & n & -7 & 20 \\
f(n) & -5 & 24 \\
& -1 & 32 \\
\end{array} \)

20. \((2, 5) \ (8, 29)\)

21. \((3, 7) \ (8, 29)\)
2.4 Getting Down to Business

A Solidify Understanding Task

Calcu-rama had a net income of 5 million dollars in 2010, while a small competing company, Computafest, had a net income of 2 million dollars. The management of Calcu-rama develops a business plan for future growth that projects an increase in net income of 0.5 million per year, while the management of Computafest develops a plan aimed at increasing its net income by 15% each year.

a. Create standard mathematical models (table, graph and equations) for the projected net income over time for both companies. (Attend to precision and be sure that each model is accurate and labeled properly so that it represents the situation.)

b. Compare the two companies. How are the representations for the net income of the two companies similar? How do they differ? What relationships are highlighted in each representation?
c. If both companies were able to meet their net income growth goals, which company would you choose to invest in? Why?

d. When, if ever, would your projections suggest that the two companies have the same net income? How did you find this? Will they ever have the same net income again?

e. Since we are creating the models for these companies we can choose to have a discrete model or a continuous model. What are the advantages or disadvantages for each type of model?
2.4 Getting Down to Business – Teacher Notes

A Solidify Understanding Task

Note: Use of technology tools such as graphing calculators is recommended for this task.

Purpose:
The purpose of this task is to compare the rates of growth of an exponential and a linear function. The task provides an opportunity to look at the growth of an exponential and a linear function for large values of \(x \), showing that increasing exponential functions become much larger as \(x \) increases. This task is a good opportunity to model functions using technological tools and to discuss how to set appropriate viewing windows for functions. The task also leads to a discussion of whether this particular situation should be modeled using discrete or continuous functions.

Core Standards Focus:

F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

F-BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

F-LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context.

F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

e. Graph exponential and logarithmic functions, showing intercepts and end behavior

F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

★For F.IF.7a, 7e, and 9 focus on linear and exponential functions. Include comparisons of two functions presented algebraically. For example, compare the growth of two linear functions, or two exponential functions such as $y=3^n$ and $y=100\cdot2^n$.

Standards for Mathematical Practice of Focus in the Task:

SMP 4 – Model with mathematics.

SMP 5 – Use appropriate tools strategically.

The Teaching Cycle

Launch (Whole Class):

Start with a short discussion of the context to be sure that students understand the problem situation. As part of this discussion, clarify the choice of units and scale. Students may choose to use 5 million with million being the unit or as 5,000,000 in their equations. (They will probably find it easier to use millions as a unit, but they will need to interpret the scale on their graphs and be consistent in their equations.) Be sure that students understand terms like “net income” so that they know what the problem is asking. When students understand the problem, set them to work on the task, starting with parts a, b, and c.
Explore (Small Group):

Monitor students as they work on the task. Be prepared to redirect students that may not think of one function as linear, based on the constant growth, and the other as exponential based on the 15% growth factor. Be sure that students have discussed their answers to “c” before returning to the whole group discussion. The discussion for “d” will follow later.

Discuss and Re-launch (Whole Class):

Have a group that has written the explicit and recursive equations correctly present their work. Ask the class which company has a linear model and which has an exponential model and how can they tell from both recursive and explicit forms of the function rules. Ask how the growth pattern shows up in the equations. Finally ask if the functions should be modeled as discrete or continuous. Ask why the companies might choose a discrete or continuous model. They may choose a continuous model because they feel that the net income is increasing on a steady basis across the year, so it makes sense to fill in all the points on the graph and use an explicit formula. They may choose a discrete model because there are fluctuations in income during the year, with the net income increasing. If they can’t predict the fluctuations, they may choose to use a discrete function, modeling with just one point each year.

Once students have discussed the equations, ask students to focus on the explicit equations and complete part “d” of the task. Encourage the use of technology, either graphing calculators or computers with programs with graphing capabilities.

When students have completed their work, ask a group to present their tables showing the projected net income of the two businesses. Ask how they could find where the net income of the two businesses would be the same using their tables. Then have a group present their graphs and demonstrate how to find the year where Computafest exceeds the net income of Calcu-rama. (You may ask how to use the equations to find where the net incomes will be equal, but students will not be able to find an analytic solution to the equation.)
Conclude the task with a discussion of the end behavior of the two functions. How much will each company be making in 10 years, 20 years, etc.? Trace the graphs and look at the difference between the net incomes over time. Ask why an exponential function becomes so much larger than a linear function over time. A big idea here is that exponential growth depends on the amount available at any given time, so the more available, the bigger the increase. In the early years when the company is small, an increase of 15% adds a small amount. As the company grows, 15% of the income becomes larger and larger, making the company grow by more each year. In contrast, linear growth has the same increase every time no matter how much is available.

Aligned Ready, Set, Go: Linear and Exponential Functions 2.4
READY

Topic: Comparing arithmetic and geometric sequences.

The first and fifth terms of a sequence are given. Fill in the missing numbers if it is an arithmetic sequence. Then fill in the numbers if it is a geometric sequence.

Example:

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>+80</th>
<th>+80</th>
<th>+80</th>
<th>+80</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>84</td>
<td>164</td>
<td>244</td>
<td>324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geometric</th>
<th>x3</th>
<th>x3</th>
<th>x3</th>
<th>x3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12</td>
<td>36</td>
<td>108</td>
<td>324</td>
</tr>
</tbody>
</table>

1.

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric</td>
<td>3</td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>-6250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric</td>
<td>-6250</td>
</tr>
</tbody>
</table>

3.

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric</td>
<td>-12</td>
</tr>
</tbody>
</table>

SET

Topic: Distinguishing specifics between sequences and linear or exponential functions.

Answer the questions below with respect to the relationship between sequences and the larger families of functions.

4. If a relationship is modeled with a continuous function which of the domain choices is a possibility?
 A. \(\{x \mid x \in R, x \geq 0\} \) B. \(\{x \mid x \in W\} \)
 C. \(\{x \mid x \in Z, x \geq 0\} \) D. \(\{x \mid x \in N\} \)

5. Which one of the options below is the mathematical way to represent the Natural Numbers?
 A. \(\{x \mid x \in R, x \geq 0\} \) B. \(\{x \mid x \in Q, x \geq 0\} \)
 C. \(\{x \mid x \in Z, x \geq 0\} \) D. \(\{x \mid x \in N\} \)
6. Only one of the choices below would be used for a continuous exponential model, which one is it?
 A. $f(x) = f(x - 1) \cdot 4, f(1) = 3$
 B. $g(x) = 4^x(5)$
 C. $h(t) = 3t - 5$
 D. $k(n) = k(n - 1) - 5, k(1) = 32$

7. Only one of the choices below would be used for a continuous linear model, which one is it?
 A. $f(x) = f(x - 1) \cdot 4, f(1) = 3$
 B. $g(x) = 4^x(5)$
 C. $h(t) = 3t - 5$
 D. $k(n) = k(n - 1) - 5, k(1) = 32$

8. What domain choice would be most appropriate for an arithmetic or geometric sequence?
 A. $\{x \mid x \in R, x \geq 0\}$
 B. $\{x \mid x \in Q, x \geq 0\}$
 C. $\{x \mid x \in Z, x \geq 0\}$
 D. $\{x \mid x \in N\}$

9. What attributes will arithmetic or geometric sequences always have?
 (There could be more than one correct choice. Circle all that apply.)
 A. Continuous
 B. Discrete
 C. Domain: $\{x \mid x \in N\}$
 D. Domain: $\{x \mid x \in R\}$
 E. Negative x-values
 F. Something constant
 G. Recursive Rule

10. What type of sequence fits with linear mathematical models?
 What is the difference between this sequence type and the overarching umbrella of linear relationships? (Use words like discrete, continuous, domain and so forth in your response.)

11. What type of sequence fits with exponential mathematical models?
 What is the difference between this sequence type and the overarching umbrella of exponential relationships? (Use words like discrete, continuous, domain and so forth in your response.)
GO

Topic: Writing explicit equations for linear and exponential models.

Write the explicit equations for the tables and graphs below. This is something you really need to know. Persevere and do all you can to figure them out. Remember the tools we have used.

(#21 is bonus give it a try.)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-4</td>
<td>2/5</td>
<td>2</td>
<td>-24</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>-11</td>
<td>2</td>
<td>3</td>
<td>-48</td>
<td>-3</td>
</tr>
<tr>
<td>4</td>
<td>-18</td>
<td>10</td>
<td>4</td>
<td>-96</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>-25</td>
<td>50</td>
<td>5</td>
<td>-192</td>
<td>-1</td>
</tr>
</tbody>
</table>

16.

17.

18.

19.

20.

21.
2.5 Making My Point

A Solidify Understanding Task

Zac and Sione were working on predicting the number of quilt blocks in this pattern:

When they compared their results, they had an interesting discussion:

Zac: I got \(y = 6n + 1 \) because I noticed that 6 blocks were added each time so the pattern must have started with 1 block at \(n = 0 \).

Sione: I got \(y = 6(n - 1) + 7 \) because I noticed that at \(n = 1 \) there were 7 blocks and at \(n = 2 \) there were 13, so I used my table to see that I could get the number of blocks by taking one less than the \(n \), multiplying by 6 (because there are 6 new blocks in each figure) and then adding 7 because that’s how many blocks in the first figure. Here’s my table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>13</td>
<td>19</td>
<td></td>
<td>(6(n - 1) + 7)</td>
</tr>
</tbody>
</table>
1. What do you think about the strategies that Zac and Sione used? Are either of them correct? Why or why not? Use as many representations as you can to support your answer.

The next problem Zac and Sione worked on was to write the equation of the line shown on the graph below.

When they were finished, here is the conversation they had about how they got their equations:

Sione: It was hard for me to tell where the graph crossed the y axis, so I found two points that I could read easily, (-9, 2) and (-15, 5). I figured out that the slope was $-\frac{1}{2}$ and made a table and checked it against the graph. Here’s my table:

<table>
<thead>
<tr>
<th>x</th>
<th>-15</th>
<th>-13</th>
<th>-11</th>
<th>-9</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>$-\frac{1}{2}(n+9)+2$</td>
</tr>
</tbody>
</table>
I was surprised to notice that the pattern was to start with the \(n \), add 9, multiply by the slope and then add 2.

I got the equation: \(f(x) = -\frac{1}{2} (x + 9) + 2 \).

Zac: Hey—I think I did something similar, but I used the points, \((7, -6)\) and \((9, -7)\).

I ended up with the equation: \(f(x) = -\frac{1}{2} (x - 9) - 7 \). One of us must be wrong because yours says that you add 9 to the \(n \) and mine says that you subtract 9. How can we both be right?

2. What do you say? Can they both be right? Show some mathematical work to support your thinking.

Zac: My equation made me wonder if there was something special about the point \((9, -7)\) since it seemed to appear in my equation \(f(x) = -\frac{1}{2} (x - 9) - 7 \) when I looked at the number pattern. Now I’m noticing something interesting—the same thing seems to happen with your equation, \(f(x) = -\frac{1}{2} (x + 9) + 2 \) and the point \((-9, 2)\)

3. Describe the pattern that Zac is noticing.

4. Find another point on the line given above and write the equation that would come from Zac’s pattern.

5. What would the pattern look like with the point \((a, b)\) if you knew that the slope of the line was \(m \)?
6. Zac challenges you to use the pattern he noticed to write the equation of line that has a slope of 3 and contains the point (2, -1). What's your answer?

Show a way to check to see if your equation is correct.

7. Sione challenges you to use the pattern to write the equation of the line graphed below, using the point (5, 4).

Show a way to check to see if your equation is correct.

8. Zac: "I'll bet you can't use the pattern to write the equation of the line through the points (1, -3) and (3, -5). Try it!"

Show a way to check to see if your equation is correct.
9. **Sione:** I wonder if we could use this pattern to graph lines, thinking of the starting point and using the slope. Try it with the equation: $f(x) = -2(x + 1) - 3$.

Starting point:
Slope:

Graph:

10. Zac wonders, "What is it about lines that makes this work?" How would you answer Zac?

11. Could you use this pattern to write the equation of any linear function? Why or why not?
2.5 Making My Point – Teacher Notes

A Solidify Understanding Task

Purpose:
This is the first task of two that focus on understanding and using various notations for linear functions. The task involves students in thinking about a context where students have selected the index in two different ways, thus getting two different, but equivalent equations. The idea is extended so that students can see the relationship expressed in point/slope form of the equation of the line.

Core Standards Focus:

A-SSE.1 Interpret expressions that represent a quantity in terms of its context.
 a) Interpret parts of an expression, such as terms, factors, and coefficients.

A-SSE.6 Use the structure of an expression to identify ways to rewrite it.

A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context.

Standards for Mathematical Practice of Focus in the Task:

 SMP 2 – Reason abstractly and quantitatively.

 SMP 7 – Look for and express regularity in repeated reasoning.

The Teaching Cycle

Launch (Whole Class):

In previous tasks students have worked with visual patterns such as the one in this task. Start the lesson by telling students that Zac and Sione have worked the problem and come up with two different answers, which they are trying to resolve with sound reasoning. Students need to figure
out how Zac and Sione have arrived at different equations and who is right through each of the scenarios in the task.

Explore (Small Group):

Monitor students as they work through the task to see that they understand each scenario. In problem #1, watch for students that have labeled the figures to match the equations; either starting with \(n = 0 \) or \(n = 1 \). For problems 2-5, watch to see that students are noticing patterns in how the numbers are used in the equation and making sense of the tables.

Discuss (Whole Class):

Be prepared for the whole group discussion by having large versions of the figure in #1 ready to be used. Ask a student to explain the difference between Zac and Sione’s equations and why they both make sense as models for the figures. Ask a student to show whether or not the two equations are equivalent.

Move to the next scenario, asking for verbal descriptions of the pattern they noticed in #3. Ask for a student to give some examples of equations that they wrote for #4 using the pattern. Ask, “Are the equations equivalent? How do you know?” Ask for students to give their answer for #4. If there are differences in equations among the groups, discuss the differences. Finally, ask students for reasons why this relationship should hold for any linear function. After discussing their reasons, offer that this pattern is often used as a formula for writing equations and graphing lines and is called point/slope form of the equation of a line. You may wish to show them that this form can be derived from the slope formula:

\[
m = \frac{y - y_1}{x - x_1}
\]

With a little rearranging:

\[
m(x - x_1) = y - y_1
\]

\[
y = m(x - x_1) + y_1
\]
The focus of this task is on the connections between representations and how any point can be used to create an equation. This is the task for students to think about this concept. The derivation is important but may come later. For each problem, demonstrate the connection between the strategies that students used and the slope/intercept formula. After these three problems, solicit answers for question #10; what is it about lines that cause this connection? Answers should include the idea that the constant rate of change makes it possible to start at any point on the line and find another point. In the past, students have used the y-intercept as the starting point, but any known point will work as well to write an equation or to graph the line.

Aligned Ready, Set, Go: Linear and Exponential Functions 2.5
READY

Topic: Writing equations of lines.

Write the equation of a line in slope-intercept form: \(y = mx + b \), using the given information.

1. \(m = -7, \ b = 4 \)
2. \(m = 3/8, \ b = -3 \)
3. \(m = 16, \ b = -1/5 \)

Write the equation of the line in point-slope form: \(y = m(x - x_1) + y_1 \), using the given information.

4. \(m = 9, \ (0, \ -7) \)
5. \(m = 2/3, \ (-6, \ 1) \)
6. \(m = -5, \ (4, \ 11) \)

7. \((2, \ -5) \ (-3, \ 10) \)
8. \((0, \ -9) \ (3, \ 0) \)
9. \((-4, \ 8) \ (3, \ 1) \)
SET

Topic: Graphing linear and exponential functions

Make a graph of the function based on the following information. Add your axes. Choose an appropriate scale and label your graph. Then write the equation of the function.

10. The beginning value is 5 and its value is 3 units smaller at each stage.
 Equation:

11. The beginning value is 16 and its value is \(\frac{3}{4}\) smaller at each stage.
 Equation:

12. The beginning value is 1 and its value is 10 times as big at each stage.
 Equation:

13. The beginning value is -8 and its value is 2 units larger at each stage.
 Equation:
GO

Topic: Equivalent equations

Prove that the two equations are equivalent by simplifying the equation on the right side of the equal sign. The justification in the example is to help you understand the steps for simplifying. You do NOT need to justify your steps.

Example:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x - 4 = 8 + x - 5x + 6(x - 2)$</td>
<td>$= 8 - 4x + 6x - 12$ Add $x - 5x$ and distribute the 6 over $(x - 2)$</td>
</tr>
<tr>
<td>$= -4 + 2x$ Combine like terms.</td>
<td></td>
</tr>
<tr>
<td>$2x - 4 = 2x - 4$ Commutative property of addition</td>
<td></td>
</tr>
</tbody>
</table>

14. $x - 5 = 5x - 7 + 2(3x + 1) - 10x$
15. $6 - 13x = 24 - 10(2x + 8) + 62 + 7x$

16. $14x + 2 = 2x - 3(-4x - 5) - 13$
17. $x + 3 = 6(x + 3) - 5(x + 3)$

18. $4 = 7(2x + 1) - 5x - 3(3x + 1)$
19. $x = 12 + 8x - 3(x + 4) - 4x$

20. Write an expression that equals $(x - 13)$. It must have at least two sets of parentheses and one minus sign. Verify that it is equal to $(x - 13)$.
2.6 Form Follows Function

A Practice Understanding Task

In our work so far, we have worked with linear and exponential equations in many forms. Some of the forms of equations and their names are:

Linear Functions

<table>
<thead>
<tr>
<th>Equation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \frac{1}{2}x + 1$</td>
<td>Slope Intercept Form</td>
</tr>
<tr>
<td></td>
<td>$y = mx + b$, where m is the slope and b is the y-intercept</td>
</tr>
<tr>
<td>$y = \frac{1}{2}(x - 4) + 3$</td>
<td>Point Slope Form</td>
</tr>
<tr>
<td></td>
<td>$y = m(x - x_1) + y_1$, where m is the slope and (x_1, y_1) the coordinates of a point on the line</td>
</tr>
<tr>
<td>$f(0) = 1, f(n) = f(n-1) + \frac{1}{2}$</td>
<td>Recursion Formula</td>
</tr>
<tr>
<td></td>
<td>$f(n) = f(n-1) + D$, given an initial value $f(a)$</td>
</tr>
<tr>
<td></td>
<td>$D = \text{constant difference in consecutive terms}$</td>
</tr>
<tr>
<td></td>
<td>(used only for discrete functions)</td>
</tr>
</tbody>
</table>

Exponential Functions

<table>
<thead>
<tr>
<th>Equation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 10(3)^x$</td>
<td>Explicit Form</td>
</tr>
<tr>
<td></td>
<td>$y = a(b)^x$</td>
</tr>
<tr>
<td>$f(0) = 10, f(n+1) = 3f(n)$</td>
<td>Recursion Formula</td>
</tr>
<tr>
<td></td>
<td>$f(n + 1) = Rf(n)$, given an initial value $f(a)$</td>
</tr>
<tr>
<td></td>
<td>$R = \text{constant ratio between consecutive terms}$</td>
</tr>
<tr>
<td></td>
<td>(used only for discrete functions)</td>
</tr>
</tbody>
</table>
Knowing a number of different forms for writing and graphing equations is like having a mathematical toolbox. You can select the tool you need for the job, or in this case, the form of the equation that makes the job easier. Any master builder will tell you that the more tools you have the better. In this task, we'll work with our mathematical tools to be sure that we know how to use them all efficiently. As you model the situations in the following problems, think about the important information in the problem and the conclusions that can be drawn from it. Is the function linear or exponential? Does the problem give you the slope, a point, a ratio, a y-intercept? Is the function discrete or continuous? This information helps you to identify the best tools and get to work!

1. In his job selling vacuums, Joe makes $500 each month plus $20 for each vacuum he sells. Write the equation that describes Joe's monthly income I as a function of the n, the number of vacuums sold.

Name the form of the equation you wrote and why you chose to use that form.

This function is: linear exponential neither (choose one)
This function is: continuous discrete neither (choose one)

2. Write the equation of the line with a slope of -1 through the point (-2, 5)

Name the form of the equation you wrote and why you chose to use that form.

This function is: linear exponential neither (choose one)
This function is: continuous discrete neither (choose one)
3. Write the equation of the geometric sequence with a constant ratio of 5 and a first term of -3.

Name the form of the equation you wrote and why you chose to use that form.

This function is: linear exponential neither (choose one)
This function is: continuous discrete neither (choose one)

3. Write the equation of the function graphed below:

![Graph of a linear function]

Name the form of the equation you wrote and why you chose to use that form.

This function is: linear exponential neither (choose one)
This function is: continuous discrete neither (choose one)

4. The population of the resort town of Java Hot Springs in 2003 was estimated to be 35,000 people with an annual rate of increase of about 2.4%. Write the equation that models the number of people in Java Hot Springs, with \(t \) = the number of years from 2003?

Name the form of the equation you wrote and why you chose to use that form.

This function is: linear exponential neither (choose one)
This function is: continuous discrete neither (choose one)
5. Yessica’s science fair project involved growing some seeds to see what fertilizer made the seeds grow fastest. One idea she had was to use an energy drink to fertilize the plant. (She thought that if they make people perky, they might have the same effect on plants.) This is the data that shows the growth of the seed each week of the project.

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>1.7</td>
<td>2.9</td>
<td>4.1</td>
<td>5.3</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Write the equation that models the growth of the plant over time.

Name the form of the equation you wrote and why you chose to use that form.

This function is: linear exponential neither (choose one)

This function is: continuous discrete neither (choose one)

An equation gives us information that we can use to graph the function. Pick out the important information given in each of the following equations and use the information to graph the function.

6. \(y = \frac{1}{2}x - 5 \)

What do you know from the equation that helps you to graph the function?
7. \(y = 2^n \)

What do you know from the equation that helps you to graph the function?

8. \(y = -2(x + 6) + 8 \)

What do you know from the equation that helps you to graph the function?

9. \(f(1) = -5, f(n) = f(n - 1) + 1 \)

What do you know from the equation that helps you to graph the function?
2.6 Form Follows Function – Teacher Notes

A Practice Understanding Task

Purpose:
The purpose of the task is to build fluency with the procedural work of linear and exponential functions. This task is designed to help students recognize the information given in a problem and use it efficiently. In the task, students will work with both linear and exponential functions given in tables, graphs, equations, and story contexts. They will construct various representations, with an emphasis on writing equations using various forms and using equations to graph the functions.

Core Standards Focus:

F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context.
F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

- Graph linear and quadratic functions and show intercepts, maxima, and minima.
- Graph exponential and logarithmic functions, showing intercepts and end behavior

★For F.IF.7a, 7e, and 9 focus on linear and exponential functions. Include comparisons of two functions presented algebraically. For example, compare the growth of two linear functions, or two exponential functions such as y=3^n and y=100·2^n.

A-SSE.6 Use the structure of an expression to identify ways to rewrite it.
Standards for Mathematical Practice of Focus in the Task:

SMP 3 - Construct viable arguments and critique the reasoning of others.

SMP 6 – Attend to precision.

The Teaching Cycle

Launch (Whole Class): Begin by telling students that various forms of equations are tools for our work. When we solve problems, different information is available every time, so having a different ways of using the information is often handy. Briefly review the names for the various forms of the equations given at the beginning of the task. Tell students that in this task they should be working on becoming fluent with writing and using equations for both linear and exponential functions.

Explore (Small Group): Monitor students as they work, looking for students recognizing when one form may be more efficient than another. What are the features of the problem that make one form more useful than another? Look for students that have used different forms for writing equations on the same problem to share during the discussion. Also watch for problems that are more difficult for students so that they can be discussed.

Discuss (Whole Class): Begin the discussion with one of the linear problems (1-4) that two students have used different strategies to model. Ask them to present their reasoning about the strategy they chose and then ask the class to compare which strategy is the most efficient. Share as many problems as time permits, each time asking students why they selected a particular form and why it was the most efficient form to use in the circumstance.

As students share how they graphed the functions given, emphasize the use of the information given in each form. When we recognize the information and know how to use it, it often makes it unnecessary to construct a table of values, saving time. It also helps us to have a quick image to help in visualizing equations when we are trying to think about a particular function.

Aligned Ready, Set, Go: Linear and Exponential Functions 2.6
READY

Topic: Comparing linear and exponential models.

Comparing different characteristics of each type of function by filling in the cells of each table as completely as possible.

<table>
<thead>
<tr>
<th>1. Type of growth</th>
<th>(y = 4 + 3x)</th>
<th>(y = 4(3^x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. What kind of sequence corresponds to each model?</td>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td>(x)</td>
<td>(y)</td>
<td>(x)</td>
</tr>
</tbody>
</table>

3. Make a table of values

4. Find the rate of change

5. Graph each equation.
 Compare the graphs.
 What is the same?
 What is different?

6. Find the y-intercept for each function.
7. Find the y-intercepts for the following equations
 a) \(y = 3x \)
 b) \(y = 3^x \)

8. Explain how you can find the y-intercept of a linear equation and how that is different from finding the y-intercept of a geometric equation.

SET
Topic: Efficiency with different forms of linear and exponential functions.

For each exercise or problem below use the given information to determine which of the forms would be the most efficient to use for what is needed. (See task 2.6, Linear: slope-intercept, point-slope form, recursive, Exponential: explicit and recursive forms)

9. Jasmine has been working to save money and wants to have an equation to model the amount of money in her bank account. She has been depositing $175 a month consistently, she doesn’t remember how much money she deposited initially, however on her last statement she saw that her account has been open for 10 months and currently has $2475 in it. Create an equation for Jasmine.
 Which equation form do you chose? Write the equation.

10. The table below shows the number of rectangles created every time there is a fold made through the center of a paper. Use this table for each question.

<table>
<thead>
<tr>
<th>Folds</th>
<th>Rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

A. Find the number or rectangles created with 5 folds.
 Which equation form do you chose? Write the equation.

B. Find the number of rectangles created with 14 folds.
 Which equation form do you chose? Write the equation.
11. Using a new app that I just downloaded I want to cut back on my calorie intake so that I can lose weight. I currently weigh 90 kilograms, my plan is to lose 1.2 kilograms a week until I reach my goal. How can I make an equation to model my weight loss for the next several weeks.

Which equation form do you chose? **Write the equation.**

12. Since Scott started doing his work out plan Janet has been inspired to set her self a goal to do more exercise and walk a little more each day. She has decided to walk 10 meters more every day. On the day 20 she walked 800 meters. How many meters will she walk on day 21? On day 60?

Which equation form do you chose? **Write the equation.**

For each equation provided state what information you see in the equation that will help you graph it, then graph it. Also, use the equation to fill in any four coordinates on the table.

13. \[y = \left(\frac{1}{2}\right)^n \]

14. \[y = 5(x - 2) - 6 \]

What do you know from the equation that helps you to graph the function?
GO
Topic: Solving one-step equations with justification.

Recall the two properties that help us solve equations.

The Additive property of equality states:
You can add any number to both sides of an equation and the equation will still be true.

The Multiplicative property of equality states:
You can multiply any number to both sides of an equation and the equation will still be true.

<table>
<thead>
<tr>
<th>Example 1:</th>
<th>$x - 13 = 7$</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+13$</td>
<td>$x + 0 = 20$</td>
<td>additive property of equality</td>
</tr>
<tr>
<td>x</td>
<td>$x = 20$</td>
<td>addition</td>
</tr>
<tr>
<td>$+13$</td>
<td>$x = 20$</td>
<td>additive identity (You added 0 and got x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 2:</th>
<th>$5x = 35$</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{5}{5}$</td>
<td>$\frac{35}{5}$</td>
<td>multiplicative property of equality (multiplied by $\frac{1}{5}$)</td>
</tr>
<tr>
<td>$1x = 7$</td>
<td></td>
<td>multiplicative identity (A number multiplied by its reciprocal $= 1$)</td>
</tr>
</tbody>
</table>

15. $3x = 15$ | Justification |
16. $x - 10 = 2$ | Justification |

17. $-16 = x + 11$ | Justification |
18. $6 + x = 10$ | Justification |

19. $6x = 18$ | Justification |
20. $-3x = 2$ | Justification |