Module 9
Modeling Data
MODULE 9 - TABLE OF CONTENTS

MODELING DATA

9.1 Texting by the Numbers – A Solidify Understanding Task
Use context to describe data distribution and compare statistical representations (S.ID.1, S.ID.3)
READY, SET, GO Homework: Modeling Data 9.1

9.2 Data Distribution – A Solidify/Practice Understanding Task
Describe data distributions and compare two or more data sets (S.ID.1, S.ID.3)
READY, SET, GO Homework: Modeling Data 9.2

9.3 After School Activity – A Solidify Understanding Task
Interpret two way frequency tables (S.ID.5)
READY, SET, GO Homework: Modeling Data 9.3

9.4 Relative Frequency – A Solidify/Practice Understanding Task
Use context to interpret and write conditional statements using relative frequency tables (S.ID.5)
READY, SET, GO Homework: Modeling Data 9.4

9.5 Connect the Dots – A Develop Understanding Task
Develop an understanding of the value of the correlation co-efficient (S.ID.8)
READY, SET, GO Homework: Modeling Data 9.5

9.6 Making More $ – A Solidify Understanding Task
Estimate correlation and lines of best fit. Compare to the calculated results of linear regressions and the correlation co-efficient (S.ID.7, S.ID.8)
READY, SET, GO Homework: Modeling Data 9.6
9.7 Getting Schooled – A Solidify Understanding Task
Use linear models of data and interpret the slope and intercept of regression lines with various units (S.ID.6, S.ID.7, S.ID.8)
READY, SET, GO Homework: Modeling Data 9.7

9.8 Rocking the Residuals – A Develop Understanding Task
Use residual plots to analyze the strength of a linear model for data (S.ID.6)
READY, SET, GO Homework: Modeling Data 9.8

9.9 Lies and Statistics – A Practice Understanding Task
Use definitions and examples to explain understanding of correlation coefficients, residuals, and linear regressions (S.ID.6, S.ID.7, S.ID.8)
READY, SET, GO Homework: Modeling Data 9.9
9.1 Texting by the Numbers

A Solidify Understanding Task

Technology changes quickly and yet has a large impact on our lives. Recently, Rachel was busy chatting with her friends via text message when her mom was trying to also have a conversation with her. Afterward, they had a discussion about what is an appropriate number of texts to send each day. Since they could not agree, they decided to collect data on the number of texts people send on any given day. They each asked 24 of their friends the following question: “What is the average number of texts you SEND each day?” The data and histogram representing all 48 responses:

\{0, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 10, 12, 13, 15, 15, 16, 20, 25, 35, 36, 70, 80, 85, 110, 130, 137, 138, 138, 140, 142, 143, 145, 150, 150, 150, 150, 150, 150, 155, 162, 164, 165, 175, 275\}
Part I:

1. What information can you conclude based on the histogram above?

2. Represent the same data by creating a box plot above the histogram.

3. What story does the box plot tell? Describe the pros and cons of each representation (histogram and box plot). In other words, what information does each representation highlight? What information does each representation hide or obscure?

Part II: Prior to talking about the data with her mom, Rachel had created a box plot using her own data she collected and it looked quite different than when they combined their data.

Average number of texts sent each day

4. Describe the data Rachel collected from her friends. What does this information tell you?

5. Compare the two box plots (Rachel’s data vs all data).

6. Rachel wants to continue sending her normal number of texts (average of 100 per day) and her mom would like her to decrease this by half. Present an argument for each side, using mathematics to justify each person’s request.
READY

Topic: Measures of central tendency

Sam's test scores for the term were 60, 89, 83, 99, 95, and 60.

1. Suppose that Sam's teacher decided to base the term grade on the mean.
 a. What grade would Sam receive?

 b. Do you think this is a fair grade? Explain your reasoning.

2. Suppose that Sam's teacher decided to base the term grade on his median score.
 a. What grade would Sam receive?

 b. Do you think this is a fair grade? Explain your reasoning.

3. Suppose that Sam's teacher decided to base the term grade on the mode score.
 a. What grade would Sam receive?

 b. Do you think this is a fair grade? Explain your reasoning.

4. Aiden's test scores for the same term were 30, 70, 90, 90, 91, and 99. Which measure of central tendency would Aiden want his teacher to base his grade on? Justify your thinking.

5. Most teachers base grades on the mean. Do you think this is a fair way to assign grades? Why or why not?
SET

Topic: Examining data distributions in a box-and-whisker plot.

6. Make a box-and-whisker plot for the following test scores.

60, 64, 68, 68, 72, 76, 76, 80, 80, 84, 84, 84, 88, 88, 92, 92, 96, 96, 96, 96, 96, 96, 100, 100

7 a. How much of the data is represented by the box?

b. How much is represented by each whisker?

8. What does the graph tell you about student success on the test?

GO

Topic: Creating histograms.

Use the data from the SET section to answer the following questions.

9. Make a frequency table with intervals. Use an interval of 5.

10. Make a histogram of the data using your intervals of 5.

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 - 64</td>
<td></td>
</tr>
<tr>
<td>65 - 69</td>
<td></td>
</tr>
<tr>
<td>70 - 74</td>
<td></td>
</tr>
<tr>
<td>75 - 79</td>
<td></td>
</tr>
<tr>
<td>80 - 84</td>
<td></td>
</tr>
<tr>
<td>85 - 89</td>
<td></td>
</tr>
<tr>
<td>90 - 94</td>
<td></td>
</tr>
<tr>
<td>95 - 99</td>
<td></td>
</tr>
<tr>
<td>100 - 104</td>
<td></td>
</tr>
</tbody>
</table>

11. What information is highlighted in the histogram?

12. What information is highlighted in the box-and-whisker plot?
9.2 Data Distribution

A Practice Understanding Task

A lot of information can be obtained from looking at data plots and their distributions. It is important when describing data that we use context to communicate the shape, center, and spread.

Shape and spread:
- **Modes:** uniform (evenly spread—no obvious mode), unimodal (one main peak), bimodal (two main peaks), or multimodal (multiple locations where the data is relatively higher than others).
- **Skewed distribution:** when most data is to one side leaving the other with a ‘tail’. Data is skewed to side of tail. (If tail is on left side of data, then it is skewed left).
- **Normal distribution and standard deviation:** curve is unimodal and symmetric. Data that has a normal distribution can also describe the data by how far it is from the mean using standard deviation.
- **Outliers:** values that stand away from the body of the distribution. For a box-and-whisker outliers determined if they are more than 1.5 times the interquartile range (length of box) beyond quartiles 1 and 3. Also considered an outlier if data is more than two standard deviations from the center of a normal distribution.
- **Variability:** values that are close together have low variability; values that are spread apart have high variability.

Center:
- Analyze the data and see if one value can be used to describe the data set. Normal distributions make this easy. If not a normal distribution, determine if there is a ‘center’ value that best describes the data. Bimodal or multimodal data may not have a center that would provide useful data.

There are representations of test scores from six different classes found below, for each:
1. Describe the data distribution.
2. Compare data distributions between Anderson and Williams.
4. Compare data distributions between Croft and Hurlea.
5. Compare data distributions between Jones, Spencer, and Anderson.
6. Compare data distributions between Spencer and the other histograms.
7. Which distributions are most similar? Different? Explain your answer.
SECONDARY MATH I // MODULE 3
MODELING DATA—9.2

Data set I: Williams’s class

Data set II: Lemon’s class

Data set III: Croft’s Class

Data set IV: Anderson’s Class

Data set V: Hurlea’s class

Data set VI: Jones’ class
Data set VII: Spencer’s class

Data set VIII: Overall Achievement Test Scores
Topic: Drawing conclusions from data.

In problems 1 – 4 you are to select the best answer based on the given data. Below your chosen answer is a confidence scale. Circle the statement that best describes your confidence in the correctness of the answer you chose. The goal is to gain awareness of how it seems easier to draw conclusions in some cases than in others.

1. Data: 1, 2, 4, 8, 16, 32, The next number in the list will be: ______
 a. larger than 32
 b. positive
 c. exactly 64
 d. less than 32

I am certain I am correct. I am a little unsure. I had no idea so I guessed.

What about the data made you feel the way you did about the answer you marked?

2. Data: 47, -13, -8, 9, -23, 14, The next number in the list will be: ______
 a. positive
 b. negative
 c. less than 100
 d. less than -100

I am certain I am correct. I am a little unsure. I had no idea so I guessed.

What about the data made you feel the way you did about the answer you marked?

3. Data: -10, ¾, 38, -10, ½, -81, -10, ¼, 93, -10, The next number in the list will be: ______
 a. more than 93
 b. negative
 c. a fraction
 d. a whole number

I am certain I am correct. I am a little unsure. I had no idea so I guessed.

4. Data: 50, -43, 36, -29, 22, -15 The next number in the list will be: ______
 a. odd
 b. less than 9
 c. two-digits
 d. greater than -15

I am certain I am correct. I am a little unsure. I had no idea so I guessed.

What about the data made you feel the way you did about the answer you marked?
SET
Topic: Creating histograms.

Mr. Austin gave a ten-point quiz to his 9th grade math classes. A total of 50 students took the quiz. Mr. Austin scored the quizzes and listed the scores alphabetically as follows.

<table>
<thead>
<tr>
<th>1st Period Math</th>
<th>2nd Period Math</th>
<th>3rd Period Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 4, 5, 7, 5,</td>
<td>4, 5, 8, 6, 8,</td>
<td>9, 8, 10, 5, 9,</td>
</tr>
<tr>
<td>9, 5, 4, 6, 6,</td>
<td>9, 5, 8, 5, 1,</td>
<td>7, 8, 9, 8, 5,</td>
</tr>
<tr>
<td>8, 5, 7, 5, 8,</td>
<td>5, 5, 7, 5, 7,</td>
<td>8, 10, 8, 8, 5,</td>
</tr>
<tr>
<td>1, 8, 7, 10, 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Use ALL of the quiz data to make a frequency table with intervals. Use an interval of 2.

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td></td>
</tr>
<tr>
<td>2 - 3</td>
<td></td>
</tr>
<tr>
<td>4 - 5</td>
<td></td>
</tr>
<tr>
<td>6 - 7</td>
<td></td>
</tr>
<tr>
<td>8 - 9</td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
</tr>
</tbody>
</table>

6. Use your frequency table to make a histogram for the data

7. Describe the data distribution of the histogram you created. Include words such as: mode, skewed, outlier, normal, symmetric, center, and spread, if they apply. (Hint: Don’t forget standard deviation.)
8. Create a graph of your choice (histogram, boxplot, dotplot) for 1st and 3rd period.

9. Which class performed better? Justify your answer by comparing the shape, center, and spread of the two classes. (Hint: Don’t forget standard deviation.)

GO

Topic: Figuring percentages

10. What percent of 97 is 11?
11. What percent of 88 is 132?

12. What percent of 84 is 9?
13. What percent of 88.6 is 70?

14. What is 270% of 60?
15. What is 84% of 25?
9.3 After School Activity

A Develop Understanding Task

Part I

Rashid is in charge of determining the upcoming after school activity. To determine the type of activity, Rashid asked several students whether they prefer to have a dance or play a game of soccer. As Rashid collected preferences, he organized the data in the following two-way frequency table:

<table>
<thead>
<tr>
<th></th>
<th>Girls</th>
<th>Boys</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soccer</td>
<td>14</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>Dance</td>
<td>46</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>46</td>
<td>106</td>
</tr>
</tbody>
</table>

Rashid is feeling unsure of the activity he should choose based on the data he has collected and is asking for help. To better understand how the data is displayed, it is useful to know that the outer numbers, located in the margins of the table, represent the total frequency for each row or column of corresponding values and are called marginal frequencies. Values that are part of the ‘inner’ body of the table are created by the intersection of information from the column and the row and they are called the joint frequencies.

1. Using the data in the table, construct a viable argument and explain to Rashid which after school event he should choose.
Part II: Two way frequency tables allow us to organize categorical data in order to draw conclusions. For each set of data below, create a frequency table. When each frequency table is complete, write three sentences about observations of the data, including any trends or associations in the data.

2. **Data set:** There are 45 total students who like to read books. Of those students, 12 of them like non-fiction and the rest like fiction. Four girls like non-fiction. Twenty boys like fiction.

<table>
<thead>
<tr>
<th></th>
<th>Fiction</th>
<th>Nonfiction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation 1:
Observation 2:
Observation 3:

3. **Data set:** 35 seventh graders and 41 eighth graders completed a survey about the amount of time they spend on homework each night. 50 students said they spent more than an hour. 12 eighth graders said they spend less than an hour each night.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than one hour</td>
<td></td>
</tr>
<tr>
<td>Less than one hour</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Observation 1:
Observation 2:
Observation 3:
Topic: Interpreting data from a scatterplot

1. The scatter plot compares shoe size and height in adult males. Based on the graph, do you think there is a relationship between a man’s shoe size and his height?

 Explain your answer.

2. The scatter plot compares left-handedness to birth weight. Based on the graph, do you think being left-handed is related to a person's birth weight?

 Explain your answer.
SET

Topic: Two-way frequency tables

Here is the data from Mr. Austin’s 10-point quiz. Students needed to score 6 or better to pass the quiz.

<table>
<thead>
<tr>
<th>1st Period Math</th>
<th>2nd Period Math</th>
<th>3rd Period Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 4, 3, 7, 5,</td>
<td>3, 3, 8, 6, 6,</td>
<td>9, 8, 10, 5, 9,</td>
</tr>
<tr>
<td>9, 5, 4, 6, 6,</td>
<td>9, 5, 8, 5, 3,</td>
<td>7, 8, 9, 8, 3,</td>
</tr>
<tr>
<td>8, 5, 7, 3, 6,</td>
<td>5, 5, 7, 5, 7</td>
<td>8, 10, 8, 7, 5</td>
</tr>
<tr>
<td>2, 8, 7, 10, 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Make a two-way frequency table showing how many students passed the quiz and how many students failed the quiz in each class.

<table>
<thead>
<tr>
<th></th>
<th>1st period</th>
<th>2nd period</th>
<th>3rd period</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use a colored pencil to lightly shade the cells containing the joint frequency numbers in the table. The un-shaded numbers are the marginal frequencies. (Use these terms to answer the following questions.)

4. If Mr. Austin wanted to see how many students in all 3 classes combined passed the quiz, where would he look?

5. If Mr. Austin wanted to write a ratio of the number of passing students compared to the number of failing students for each class, where would he find the numbers he would need to do this?

6. Make a two-way frequency table that gives the relative frequencies of the quiz scores for each class.

<table>
<thead>
<tr>
<th></th>
<th>1st Period</th>
<th>2nd Period</th>
<th>3rd Period</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Sophie surveyed all of the 6th grade students at Reagan Elementary School to find out which TV Network was their favorite. She thought that it would be important to know whether the respondent was a boy or a girl so she recorded her information the following way.

<table>
<thead>
<tr>
<th>Animal Planet</th>
<th>Cartoon Network</th>
<th>Disney</th>
<th>Nickelodeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBBB BBBB</td>
<td>BBBB BBBB</td>
<td>GGGGBB</td>
<td>BBGGGGGGGGGG</td>
</tr>
<tr>
<td>BGBBGB BBB</td>
<td>BBGGGB BBB</td>
<td>GBBG</td>
<td>GGGGGGBBB</td>
</tr>
<tr>
<td>GG BB BBBB</td>
<td>BBBBB BBBB</td>
<td>BBBBBB</td>
<td>BBBBBBBBBBBB</td>
</tr>
</tbody>
</table>

Sophie planned to use her data to answer the following questions:

I. Are there more girls or boys in the 6th grade?
II. Which network was the boys' favorite?
III. Was there a network that was favored by more than 50% of one gender?

But when she looked at her chart, she realized that the data wasn't telling her what she wanted to know. Her teacher suggested that her data would be easier to analyze if she could organize it into a two-way frequency chart. Help Sophie out by putting the frequencies into the correct cells.

<table>
<thead>
<tr>
<th>Favorite TV Networks</th>
<th>Girls</th>
<th>Boys</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Planet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartoon Network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickelodeon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now that Sophie has her data organized, use the two-way frequency chart to answer her 3 questions.

a. Are there more girls or boys in the 6th grade?

b. Which network was the boys’ favorite?

c. Was there a network that was favored by more than 50% of one gender?
9.4 Relative Frequency

A Solidify/Practice Understanding Task

Rachel is thinking about the data she and her mom collected for the average number of texts a person sends each day and started thinking that perhaps a two-way table of the data they collected would help convince her mom that she does not send an excessive amount of texts for a teenager. The table separates each data point by age (teenager and adult) and by the average number of texts sent (more than 100 per day or less than 100 per day).

<table>
<thead>
<tr>
<th></th>
<th>Average is more than 100 texts sent per day</th>
<th>Average is less than 100 texts sent per day</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teenager</td>
<td>20</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Adult</td>
<td>2</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>26</td>
<td>48</td>
</tr>
</tbody>
</table>

1. Write two observation statements of this two way table.

To further provide evidence, Rachel decided to do some research. She found that only 43% of people with phones send over 100 texts per day. She was disappointed that the data did not support her case and confused because it did not seem to match what she found in her survey.

2. What questions do these statistics raise for you? What data should Rachel look for to support her case?

After looking more closely at the data, Rachel found other percentages within the same data that seemed more accurate with the data she collected from her teenage friends.
3. How might Rachel use the data in the two way table to find percentages that would be useful for her case?

Part II: Once Rachel realized there are a lot of ways to look at a set of data in a two way table, she was motivated to learn about relative frequency tables and conditional frequencies. When the data is written as a percent, this is called a relative frequency table. In this situation, the ‘inner’ values represent a percent and are called conditional frequencies. The conditional values in a relative frequency table can be calculated as percentages of one of the following:
- the whole table (relative frequency of table)
- the rows (relative frequency of rows)
- the columns (relative frequency of column)

Since Rachel wants to emphasize that a person’s age makes a difference in the number of texts sent, the first thing she decided to do is focus on the ROW of values so she could write conditional statements about the number of texts a person is likely to send based on their age. This is called a relative frequency of row table.

4. Fill in the percentage of teenagers for each of the conditional frequencies in the highlighted row below:

<table>
<thead>
<tr>
<th>Row</th>
<th>Average is more than 100 texts sent per day</th>
<th>Average is less than 100 texts sent per day</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teenager % of teenagers</td>
<td>20</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>% of Adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of People</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the PERCENTAGES created focus on ROW values, all conditional observations are specific to the information in the row. Complete the following sentence for the relative frequency of row:

5. Of all teenagers in the survey, ____ % average more than 100 texts per day.

6. Write another statement based on the relative frequency of row:
Below is the relative frequency of column using the same data. This time, all of the percentages are calculated using the data in the column.

<table>
<thead>
<tr>
<th></th>
<th>Average is more than 100 texts sent per day</th>
<th>Average is less than 100 texts sent per day</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teenagers</td>
<td>20</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>91%</td>
<td>15%</td>
<td>50%</td>
</tr>
<tr>
<td>Adults</td>
<td>2</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>9%</td>
<td>85%</td>
<td>50%</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>26</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

7. Write two conditional statements using the relative frequency of column.

This data represents the relative frequency of whole table:

<table>
<thead>
<tr>
<th></th>
<th>Average is more than 100 texts sent per day</th>
<th>Average is less than 100 texts sent per day</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Teenagers</td>
<td>20</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>42%</td>
<td>8%</td>
<td>50%</td>
</tr>
<tr>
<td>% of Adults</td>
<td>2</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>46%</td>
<td>50%</td>
</tr>
<tr>
<td>% of Total</td>
<td>22</td>
<td>26</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>46%</td>
<td>54%</td>
<td>100%</td>
</tr>
</tbody>
</table>

8. Create two conditional distribution statements for the relative frequency of whole table.

9. What information is highlighted when data is interpreted from relative frequency tables?
READY

Topic: Writing explicit function rules for linear relationships

Write the explicit linear function for the given information below.

1. (3, 7) (5, 13)
2. Mike earns $11.50 an hour

3. (-5, -2) (1, 10)
4. (-2, 12) (6, 8)

5.

6.

Graphs showing linear relationships.
SET

Topic: Relative Frequency tables

For each two-way table below, create the indicated relative frequency table and also provide two observations with regard to the data.

7. This table represents survey results from a sample of students regarding mode of transportation to and from school.

<table>
<thead>
<tr>
<th></th>
<th>Walk</th>
<th>Bike</th>
<th>Car Pool</th>
<th>Bus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td>37</td>
<td>47</td>
<td>27</td>
<td>122</td>
<td>233</td>
</tr>
<tr>
<td>Girls</td>
<td>38</td>
<td>22</td>
<td>53</td>
<td>79</td>
<td>192</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>69</td>
<td>80</td>
<td>201</td>
<td>425</td>
</tr>
</tbody>
</table>

Create the relative frequency of column table. Then provide two observation statements.

<table>
<thead>
<tr>
<th></th>
<th>Walk</th>
<th>Bike</th>
<th>Car Pool</th>
<th>Bus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

8. The two-way table contains survey data regarding family size and pet ownership.

<table>
<thead>
<tr>
<th></th>
<th>No Pets</th>
<th>Own one Pet</th>
<th>More than one pet</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Families of 4 or less</td>
<td>35</td>
<td>52</td>
<td>85</td>
<td>172</td>
</tr>
<tr>
<td>Families of 5 or more</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>70</td>
<td>95</td>
<td>215</td>
</tr>
</tbody>
</table>

Create the relative frequency of row table. Then provide two observation statements.

<table>
<thead>
<tr>
<th></th>
<th>No Pets</th>
<th>Own one Pet</th>
<th>More than one pet</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Families of 4 or less</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Families of 5 or more</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
9. The two-way table below contains survey data about boys and girls shoes.

<table>
<thead>
<tr>
<th></th>
<th>Athletic shoes</th>
<th>Boots</th>
<th>Dress Shoe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls</td>
<td>21</td>
<td>35</td>
<td>60</td>
<td>116</td>
</tr>
<tr>
<td>Boys</td>
<td>50</td>
<td>16</td>
<td>10</td>
<td>76</td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
<td>51</td>
<td>70</td>
<td>192</td>
</tr>
</tbody>
</table>

Create the relative frequency of whole table. Then provide two observation statements.

<table>
<thead>
<tr>
<th></th>
<th>Athletic shoes</th>
<th>Boots</th>
<th>Dress Shoe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

GO

Topic: One variable statistical measures and comparisons

For each set of data determine the mean, median, mode, range, and standard deviation. Then create either a box-and-whisker plot or a histogram.

10. 23, 24, 25, 20, 25, 29, 24, 25, 30
11. 20, 24, 10, 35, 25, 29, 24, 25, 33

12. How do the data sets in problems 10 and 11 compare to one another?

13. 2, 3, 4, 5, 3, 4, 7, 4, 4
14. 1, 1, 3, 5, 5, 10, 5, 1, 14

15. How do the data sets in problems 13 and 14 compare to one another?
9.5 Connect the Dots

A Develop Understanding Task

For each set of data:
- Graph on a scatter plot.
- Use technology (graphing calculator or computer) to calculate the correlation coefficient.

Set A

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2.5</td>
<td>1.9</td>
<td>2.8</td>
<td>3.2</td>
<td>4.5</td>
<td>3.7</td>
<td>4.8</td>
<td>2.7</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set B

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2.5</td>
<td>1.9</td>
<td>2.8</td>
<td>3.2</td>
<td>4.5</td>
<td>3.7</td>
<td>4</td>
<td>4.8</td>
<td>5</td>
<td>4.6</td>
<td></td>
</tr>
</tbody>
</table>

Set C

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>4.9</td>
<td>4.2</td>
<td>3.9</td>
<td>3.5</td>
<td>3.2</td>
<td>3.1</td>
<td>2.6</td>
<td>3.2</td>
<td>2.1</td>
<td>1.3</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Set D

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>4.9</td>
<td>3.6</td>
<td>3.9</td>
<td>2.1</td>
<td>4.5</td>
<td>3.1</td>
<td>1.7</td>
<td>3.7</td>
<td>2.1</td>
<td>1.3</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Set E

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>4</td>
<td>4.2</td>
<td>3.9</td>
<td>2.8</td>
<td>3.2</td>
<td>4.5</td>
<td>3.7</td>
<td>3.2</td>
<td>4.8</td>
<td>5</td>
<td>4.4</td>
<td></td>
</tr>
</tbody>
</table>

Set F

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>2.22</td>
<td>3.62</td>
<td>4.18</td>
<td>4.88</td>
<td>5.44</td>
<td>5.3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set G

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>4.01</td>
<td>2.71</td>
<td>2.19</td>
<td>1.54</td>
<td>1.02</td>
<td>1.15</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Put the scatter plots in order based upon the correlation coefficients.

2. Compare each scatter plot with its correlation coefficient. What patterns do you see?
3. Use the data in Set A as a starting point. Keeping the same x-values, modify the y-values to obtain a correlation coefficient as close to 0.75 as you can.

Record your data here:

<table>
<thead>
<tr>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
</table>

What did you have to do with the data to get a greater correlation coefficient?

4. This time, again start with the data in Set A. Keep the same x-values, but this time, modify the y values to obtain a correlation coefficient as close to 0.25 as you can.

Record your data here:

<table>
<thead>
<tr>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
</table>

What did you have to do with the data to get a correlation coefficient that is closer to 0?

5. One more time: start with the data in Set A. Keep the same x-values, modify the y-values to obtain a correlation coefficient as close to -0.5 as you can.

Record your data here:

<table>
<thead>
<tr>
<th>2</th>
<th>2.3</th>
<th>3.3</th>
<th>3.7</th>
<th>4.2</th>
<th>4.6</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>5.7</th>
<th>6.1</th>
<th>6.4</th>
</tr>
</thead>
</table>

What did you have to do with the data to get a correlation coefficient that is negative?

6. What aspects of the data does the correlation coefficient appear to describe?

7. On the night before the last math test, Shaniqua held a study group at her house. It was a great night; they ate a lot of pizza, did math, and laughed a lot. Shaniqua scored better on her test than usual and thought it might be related to pizza. She collected the following data from her friends in the study group:
Create a scatter plot of this data and calculate the correlation coefficient.

Based on these data, would you recommend eating pizza on the night before a test to increase scores? Why or why not?

8. Describe a situation with two variables that may have a high correlation, but not be causally related.

9. What are some reasons that two variables may be highly correlated but not have a causal relationship?
READY

Topic: Estimating the line of best fit

Examine the scatterplot below. Imagine that you drew a straight line through the general pattern of the points, keeping as close as possible to all points with as many points above the line as below.

1. Predict a possible y-intercept and slope for the line you imagined.
 a. y-intercept: __________
 b. slope: __________

2. Sketch the line that you imagined for question #1 and write an equation for that line.

SET

Topic: Estimating the correlation coefficient

Match the following scatterplots with the correct correlation coefficient.

Possible correlation coefficients:

a. 0.05 b. 0.97 c. -0.94 d. -0.49 e. 0.68 f. -0.25
3.

4.

5.

6.

7.

8.
GO

Topic: Visually comparing slopes of lines.

Follow the prompt to sketch the graph of a line on the same grid with the given characteristics.

8. A greater slope

9. A lesser slope

10. A larger y–intercept and a lesser slope

11. Slope is the opposite reciprocal.
9.6 Making More $

A Solidify Understanding Task

Each year the U.S. Census Bureau provides income statistics for the United States. In the years from 1990 to 2005, they provided the data in the tables below. (All dollar amounts have been adjusted for the rate of inflation so that they are comparable from year-to-year.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Median Income for All Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>41196</td>
</tr>
<tr>
<td>2004</td>
<td>41464</td>
</tr>
<tr>
<td>2003</td>
<td>40987</td>
</tr>
<tr>
<td>2002</td>
<td>40595</td>
</tr>
<tr>
<td>2001</td>
<td>41280</td>
</tr>
<tr>
<td>2000</td>
<td>41996</td>
</tr>
<tr>
<td>1999</td>
<td>42580</td>
</tr>
<tr>
<td>1998</td>
<td>42240</td>
</tr>
<tr>
<td>1997</td>
<td>40406</td>
</tr>
<tr>
<td>1996</td>
<td>38894</td>
</tr>
<tr>
<td>1995</td>
<td>38607</td>
</tr>
<tr>
<td>1994</td>
<td>38215</td>
</tr>
<tr>
<td>1993</td>
<td>37712</td>
</tr>
<tr>
<td>1992</td>
<td>37528</td>
</tr>
<tr>
<td>1991</td>
<td>38145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Median Income for All Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>23970</td>
</tr>
<tr>
<td>2004</td>
<td>23989</td>
</tr>
<tr>
<td>2003</td>
<td>24065</td>
</tr>
<tr>
<td>2002</td>
<td>23710</td>
</tr>
<tr>
<td>2001</td>
<td>23564</td>
</tr>
<tr>
<td>2000</td>
<td>23551</td>
</tr>
<tr>
<td>1999</td>
<td>22977</td>
</tr>
<tr>
<td>1998</td>
<td>22403</td>
</tr>
<tr>
<td>1997</td>
<td>21759</td>
</tr>
<tr>
<td>1996</td>
<td>20957</td>
</tr>
<tr>
<td>1995</td>
<td>20253</td>
</tr>
<tr>
<td>1994</td>
<td>19158</td>
</tr>
<tr>
<td>1993</td>
<td>18751</td>
</tr>
<tr>
<td>1992</td>
<td>18725</td>
</tr>
<tr>
<td>1991</td>
<td>18649</td>
</tr>
</tbody>
</table>

1. Create a scatter plot of the data for men, setting 1991 as year 1.

What is your estimate of the correlation coefficient for these data?
2. On a separate graph, create a scatter plot of the data for women, setting 1991 as year 1.

What is your estimate of the correlation coefficient for these data?

3. Estimate and draw lines that model each set of data.

4. Describe how you estimated the line for men. If you chose to run the line directly through any particular points, describe why you selected them.

5. Describe how you estimated the line for women. If you chose to run the line directly through any particular points, describe why you selected them.

6. Write the equation for each of the two lines in slope intercept form.

 a. Equation for men:

 b. Equation for women:

7. Use technology to find the actual correlation coefficient for men.

 What does it tell you about the relationship between income and years for men?

8. What is the actual correlation coefficient for women?

 a. What does it tell you about the relationship between income and years for women?

 b. What do the correlation coefficients for men and women tell us about how the data compares?
9. Use technology to calculate a linear regression for each set of data. Add the regression lines to your scatter plots.

 c. Linear regression equation for men:

 d. Linear regression equation for women:

10. Compare your model to the regression line for men. What does the slope mean in each case? (Include units in your answer.)

11. Compare your model to the regression line for women. What does the y-intercept mean in each case? (Include units in your answer.)

12. Compare the regression lines for men and women. What do the lines tell us about the income of men vs women in the years from 1991-2005?

13. What do you estimate will be the median income for men and women in 2015?
14. The Census Bureau provided the following statistics for the years from 2006-2011.

<table>
<thead>
<tr>
<th>Year</th>
<th>Median Income for All Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>37653</td>
</tr>
<tr>
<td>2010</td>
<td>38014</td>
</tr>
<tr>
<td>2009</td>
<td>38588</td>
</tr>
<tr>
<td>2008</td>
<td>39134</td>
</tr>
<tr>
<td>2007</td>
<td>41033</td>
</tr>
<tr>
<td>2006</td>
<td>41103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Median Income for All Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>23395</td>
</tr>
<tr>
<td>2010</td>
<td>23657</td>
</tr>
<tr>
<td>2009</td>
<td>24284</td>
</tr>
<tr>
<td>2008</td>
<td>23967</td>
</tr>
<tr>
<td>2007</td>
<td>25005</td>
</tr>
<tr>
<td>2006</td>
<td>24429</td>
</tr>
</tbody>
</table>

With the addition of these data, what would you now estimate the median income of men in 2015 to be? Why?

15. How appropriate is a linear model for men’s and women’s income from 1991-2011? Justify your answer.
Topic: Finding distance and averages

Use the number line below to answer the questions.

1. Find the distance between point A and each of the points on the number line.

 $AF = ______ \quad AC = ______ \quad AG = ______ \quad AB = ______ \quad AD = ______ \quad AE = ______$

2. What is the total of all the distances from point A that you found in exercise number one?

3. Find the average of the distances that you found in exercise 1.

4. Which point or points on the number line is located the average distance away from point A?

5. Circle the location or locations on the number line that is the average distance away from A.

6. Find the distance between point D and each of the points on the number line.

 $DF = ______ \quad DC = ______ \quad DG = ______ \quad DA = ______ \quad DB = ______ \quad DE = ______$

7. What is the total of all the distances from point D that you found in exercise number six?

8. Find the average of the distances that you found in exercise 6.

9. Is there a point on the number line located the average distance away from point D?

10. Label a location on the number line that is the average distance away from point D, label it Y.

SET

Topic: Scatter plots and lines of best fit or trend lines

11. Create a scatter plot for the data in the table.

<table>
<thead>
<tr>
<th>English Score</th>
<th>History Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>44</td>
<td>57</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>70</td>
<td>67</td>
</tr>
</tbody>
</table>

12. Do the English and history scores have a positive or negative correlation?

13. Do the English and history scores have a strong or weak correlation?

14. Which graph below shows the best model for the data and will create the best prediction? Explain why your choice is the best model for the data.

a.

b.

c.

15. Which graph below shows the best model for the data and will create the best prediction? Explain why your choice is the best model for the data.

a.

b.

c.

16. Which graph below shows the best model for the data and will create the best prediction? Explain why your choice is the best model for the data.

a.

b.

c.

GO

Topic: Creating explicit function rules for arithmetic and geometric sequences.

Use the given information below to create an explicit function rule for each sequence.

17. \(f(2) = 7; \) common difference = 3
18. \(g(1) = 8; \) common ratio = 2

19. \(h(6) = 3; \) common ratio = -3
20. \(r(5) = -3; \) common difference = 7

21. \(g(7) = 1; \) common difference = -9
22. \(g(1) = 5; \) common ratio = \(\frac{1}{2} \)
9.7 Getting Schooled

A Solidify Understanding Task

In Getting More $, Leo and Araceli noticed a difference in men’s and women’s salaries. Araceli thought that it was unfair that women were paid less than men. Leo thought that there must be some good reason for the discrepancy, so they decided to dig deeper into the Census Bureau’s income data to see if they could understand more about these differences.

First, they decided to compare the income of men and women that graduated from high school (or equivalent), but did not pursue further schooling. They created the scatter plot below, with the \(x \) value of a point representing the average woman’s salary for some year and the \(y \) value representing the average man’s salary for the same year. For instance, the year 2011 is represented on the graph by the point \((17887, 30616)\). You can find this point on the graph in the bottom left corner.

1. Based upon the graph, estimate the correlation coefficient.
2. Estimate the average income for men in this time period. Describe how you used the graph to find it.

3. What is the average income for women in this time period? Describe how you used the graph to find it.

4. Leo and Araceli calculated the linear regression for these data to be $y = 2.189x - 6731.8$. What does the slope of this regression line mean about the income of men compared to women? Use precise units and language.

“Hmmm,” said Araceli, “It’s just as I suspected. The whole system is unfair to women.” “No, wait,” said Leo, “Let’s look at incomes for men and women with bachelor’s degrees or more. Maybe it has something to do with levels of education.”

5. Leo and Araceli started with the data for men with bachelor’s degrees or more. They found the correlation coefficient for the average salary vs year from 2000-2011 was $r = -0.894$. Predict what the graph might look like and draw it here. Be sure to scale and label the axes and put 12 points on your graph.
The actual scatter plot for salaries for men with bachelor’s degrees from 2000-2011 is below. How did you do?

6. Both Leo and Araceli were surprised at this graph. They calculated the regression line and got \(y = -588.46x + 69978 \). What does this equation say about the income of men with bachelor’s degrees from 2000-2011? Use both the slope and the y-intercept of the line of regression in your answer.

Next, they turned their attention to the data for women with bachelor’s degrees or more from 2000-2011. Here’s the data:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income for Women ($)</td>
<td>41338</td>
<td>42409</td>
<td>42746</td>
<td>42620</td>
<td>44161</td>
<td>44007</td>
<td>42690</td>
<td>42539</td>
<td>42954</td>
<td>42871</td>
<td>42992</td>
<td>43293</td>
</tr>
</tbody>
</table>
7. Analyze the data for women with bachelor's degrees by creating a scatter plot, interpreting the correlation coefficient and the regression line. For consistency with the men's graph above, use 0 for the year 2000, 1 for the year 2001, etc. Draw the graph and report the results of your analysis below:

8. Now that you have analyzed the results for women, compare the results for men and women with bachelor's degrees and more over the period from 2000-2011.
9. Leo believes that the difference in income between men and women may be explained by differences in education, but Araceli believes there must be other factors such as discrimination. Based on the data in this task and *Getting More $*, make a convincing case to support either Leo or Araceli.

10. What other data would be useful in making your case? Explain what to look for and why.
Topic: Finding distances and averages

The graph below shows several points and the line $y = x$. Use the graph to answer each question.

1. The vertical distance between point N and the line $y = x$ on the graph is 3. Find all of the vertical distances between the points and the line $y = x$.

 B:
 D:
 E:
 G:
 I:
 L:
 N:
 X:

2. Calculate the sum of all the distances you found in exercise one.

3. What is the average vertical distance of the points from the line $y = x$?

4. Is the line shown on the graph the line of best fit? Explain why or why not. If it is not the best line, draw one that is better fit to the data.

5. Estimate the correlation coefficient for this set of data points. If you have a way to calculate it exactly, check your estimate. (You could use a graphing calculator or data software.)
SET
Topic: Creating and analyzing scatter plots

Determine whether a linear or an exponential model would be best for the given scatter plot. Then sketch a model on the graph that could be used to make predictions.

8. a) Use the data in the table below to make a scatter plot.

<table>
<thead>
<tr>
<th>Weeks since school started</th>
<th>Money in savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>57</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

b) Is the correlation of the graph positive or negative? Why?

c) What would you estimate the correlation coefficient to be? Why?

d) Create a regression line and write the regression equation.

e) What does the slope of the regression equation mean in terms of the variables?

f) Most school years are 36 weeks. If the rate of spending is kept the same, how much more money needs to be saved during the summer in order for there to be money to last all 36 weeks?
GO

Topic: Determining when to use a two-way table and when use a scatter plot

9. In which situations does it make the most sense to use a two-way table and look at the relative frequencies.

10. In which situations does it make the most sense to use a scatter plot and a linear or exponential model to analyze and make decisions or draw conclusions?

Label each representation below as a function or not a function. If it is a function, label it as linear, exponential, or neither. If it does not represent a function, explain why.

11.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

12.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

13.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>-2</td>
</tr>
<tr>
<td>-5</td>
<td>-3</td>
</tr>
<tr>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>-3</td>
<td>-5</td>
</tr>
<tr>
<td>-2</td>
<td>-6</td>
</tr>
</tbody>
</table>

14. \(y + 12x = 4 \)

5. \(y = 3 \cdot 4^{(x-1)} \)

16. The amount of medicine in the bloodstream of a cat as time passes. The initial dose of medicine is 80mm and the medicine breaks down at 35% each hour.

17.

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money in bank</td>
<td>$250</td>
<td>$337.50</td>
<td>$455.63</td>
<td>$615.09</td>
<td>$830.38</td>
</tr>
</tbody>
</table>

Mathematics Vision Project
Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org
9.8 Rockin’ the Residuals

A Solidify Understanding Task

The correlation coefficient is not the only tool that statisticians use to analyze whether or not a line is a good model for the data. They also consider the residuals, which is to look at the difference between the observed value (the data) and the predicted value (the y-value on the regression line). This sounds a little complicated, but it’s not really. The residuals are just a way of thinking about how far away the actual data is from the regression line.

Start with some data:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>10</td>
<td>13</td>
<td>7</td>
<td>22</td>
<td>28</td>
<td>19</td>
</tr>
</tbody>
</table>

Create a scatter plot and graph the regression line. In this case the line is $y = 3x + 6$.
Draw a line from each point to the regression line, like the segments drawn from each point below.

1. The residuals are the lengths of the segments. How can you calculate the length of each segment to get the residuals?

2. Generally, if the data point is above the regression line the residual is positive, if the data point is below the line, the residual is negative. Knowing this, use your plan from #1 to create a table of residual values using each data point.
3. Statisticians like to look at graphs of the residuals to judge their regression lines. So, you get your chance to do it. Graph the residuals here.

Now, that you have constructed a residual plot, think about what the residuals mean and answer the following questions.

4. If a residual is large and negative, what does it mean?

5. What does it mean if a residual is equal to 0?
6. If someone told you that they estimated a line of best fit for a set of data points and all of the residuals were positive, what would you say?

7. If the correlation coefficient for a data set is equal to 1, what will the residual plot look like?

Statisticians use residual plots to see if there are patterns in the data that are not predicted by their model. What patterns can you identify in the following residual plots that might indicate that the regression line is not a good model for the data? Based on the residual plot are there any points that may be considered outliers?

8.

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org
9.

10.

11.
READY
Topic: Describing spread

Describe the spread of the data set shown in each box plot shown below. Include the median, the range, and the interquartile range.

1.

2.

3. If the box plots above represent the results of two different classes on the same assessment, which class did better? Justify your answer.

4. The two box plots below show the low temperatures for two cities in the United States. City D is the box plot on top and City E on the bottom.

a. Which city would be considered the coldest, City D or City E? Why?

b. Do these cities ever experience the same temperature? How do you know?

c. Is there a way to know the exact temperature for any given day from the box plots?

d. What advantage, if any, could a histogram of temperature data have over a box plot?
SET

Topic: Residuals, residual plots and correlation coefficients

The data sheets in exercise 5 and exercise 6 are scatter plots that have the regression line and the residuals indicated. For each exercise,

a) Mark on the graph where \((\bar{x}, \bar{y})\) would be located.
b) Use the given data sheet to create a residual plot.
c) Predict the correlation coefficient.

5. Data sheet 1
 a) mark \((\bar{x}, \bar{y})\)

 ![Graph of data sheet 1](image1)

 b) residual plot 1

 ![Residual plot 1](image2)

 C) Correlation coefficient?

6. Data sheet 2
 a) mark \((\bar{x}, \bar{y})\)

 ![Graph of data sheet 2](image3)

 B) residual plot 2

 ![Residual plot 2](image4)

 C) Correlation coefficient?
The following graphs are residual plots. Analyze the residual plots to determine how well the prediction line (line of best fit) describes the data.

7. Plot 1

8. Plot 2
GO

Topic: Geometric constructions

9. Construct an isosceles triangle with a compass and a straight edge.

10. Construct a square using a compass and a straight edge.

11. Use a compass and a straight edge to construct a hexagon inscribed in a circle.
9.9 Lies and Statistics

A Practice Understanding Task

Decide whether each statement is:

- Sometimes true
- Always true
- Never true

Give a reason for your answer.

1. The slope of the linear regression line can be calculated using any two points in the data.

__

2. If the correlation coefficient for a set of data is 0, then the line of best fit is horizontal.

__

3. The sum of the residuals for the line of best fit is 0.

__

4. If the correlation coefficient is very large, then there must be an outlier in the data.

__

5. A negative correlation coefficient means that the data points are very random and don’t really fit a linear model.

__

6. A negative residual means that the regression line is very far from the actual data point.

__

7. If the correlation coefficient is positive, then the slope of the line of best fit will probably be positive.

__
8. If there is a perfect correlation between variables in the data, then the correlation coefficient is 1.

9. To find the value of a residual for a point \((a, b)\) given a line of best fit, \(f(x)\):

 a. Find \(f(a)\)
 b. Find \(b - f(a)\)
 c. If the answer is positive, then the point is above the line.
 d. If the answer is negative, then the point is below the line.

10. The larger the residual for a given point, the further away the point is from the line of best fit.

11. If there is a perfect correlation between two variables \(a\) and \(b\), then either \(a\) caused \(b\) or \(b\) caused \(a\).
READY

Topic: Identifying types of functions and writing the explicit equations

For each representation of a function, decide if the function is linear, exponential, or neither. Justify your answer.

1. \[
\begin{array}{c|c}
 x & f(x) \\
 1 & 117649 \\
 2 & 16807 \\
 3 & 2401 \\
 4 & 343 \\
 5 & 49 \\
\end{array}
\]

2. The fee for a taxi ride is $7 for getting into the taxi plus $2 per mile.

3. \[
\begin{array}{c|c}
 x & f(x) \\
 1 & 1 \\
 4 & 2 \\
 9 & 3 \\
 16 & 4 \\
 25 & 5 \\
\end{array}
\]

4. \[
\begin{array}{c|c}
 f(x) & x \\
 1 & 1 \\
 2 & 2 \\
 3 & 3 \\
\end{array}
\]

5. \[
\begin{array}{c|c}
 f(x) & x \\
 1 & 1 \\
 2 & 2 \\
 3 & 3 \\
\end{array}
\]

6. \[
\begin{array}{c|c}
 f(x) & x \\
 1 & 1 \\
 2 & 2 \\
 3 & 3 \\
\end{array}
\]

7. \[
f(1) = 7; \quad f(x) = 5 \cdot f(x - 1)
\]

8. \[
h(x) = 3(x - 1) + 2
\]

9. \[
g(x) = 3x^2 - x - 3x^2 + 1
\]
SET

Topic: Reviewing key topics in statistics

Decide whether each statement is *sometimes true, always true, or never true.* If the statement is *sometimes true* give one example of when it is true and an example of when it is not.

10. The linear regression line passes through the average of the x values and the average of the y values.

11. A positive correlation coefficient means that the points in the scatterplot are very close together.

12. A negative residual means your predicted value is too low.

13. A correlation coefficient close to 1 means that a linear model is most appropriate for the data.

GO

Topic: Solving literal equations

Solve each equation for \(x \).

14. \(ax = d \)
15. \(b + cx = d \)
16. \(ab + cx = d \)

Solve each equation for \(y \).

17. \(4x + y = 3 \)
18. \(2y = 6x + 9 \)
19. \(5x - 2y = 10 \)

Solve each equation for the indicated variable.

20. \(A = \pi r^2 \); Solve for \(r \)
21. \(V = \frac{bh}{2} \); Solve for \(h \)
22. \(P = \frac{(12V)^2}{50} \); Solve for \(V \)